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Abstract. Data from building automation and control systems are becoming more and more im-
portant, since they are used in a growing number of (novel and established) analytics applications
such as fault detection & diagnostics (FDD), smart maintenance and optimization. However, the
quality of such data is often poor due to erroneous installation, commissioning, data recording or
meta-information. In addition, building automation engineering and service departments usually
focus on implementing and maintaining basic control functionality - data acquisition, tagging
quality, and analytics do often not take priority. Due to these data quality issues, a first important
step in any data analytics operation is to ensure data integrity. One main goal of data integrity
checks is to increase data reliability. The paper presents such checks for building automation ap-
plications, in particular three different types of plausibility checks for time series data: single sig-
nal tests, similarity tests, and reaction tests. Examples using data recorded from real building
automation project are presented for each of the three check types, demonstrating the usefulness
of these checks. Data integrity checks are set up and configured using the available metadata
which - in our case - comes in the form of semantic models that are automatically generated from
building automation engineering data. Many data integrity checks have been identified that are
potentially of great benefit in practice - both as a stand-alone application or as first part in a data
analytics process. The major prerequisite for successful data integrity checking is that the checks
can be set up with minimal effort and executed periodically. To achieve a high degree of automa-
tion, semantic data is of great importance, because it is through them that the recorded time se-
ries are provided with context and meaning. The automatically generated semantic models from
building automation engineering proved to be already rich in automation information and are
sufficient for many of the checks investigated.
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originate from all different processes in building au-
tomation. Below, examples for such reasons per
phase are given:

1. Introduction

Data analytics and fault detection & diagnostics
(FDD) methods are essential for the energy-efficient
and comfortable operation of buildings. The objec- e Installation: faults in hardware, bad sensor

tives are manifold: Create transparency regarding
optimizations in planning and operation, determine
the origin of performance gaps, ensure and maintain
the desired building performance, check the success
of energy optimization measures, create reliable
foundations for further optimization steps. However,
these goals can only be achieved based on reliable
and trustworthy data. The challenge here lies in the
frequently poor quality of the data: incomplete, erro-
neous, unstandardized, or non-normalized data are
quite common. Reasons for poor data quality
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placement, wiring errors

e Engineering: faults in control program, including
faults in system integration; wrong or mislead-
ing names, tags, units

e Commissioning: point test not done properly,
system test not done (e.g., hydraulic balancing)

e Operation: interruptions in connectivity or re-
cording; gateway config.; neglected maintenance
of building automation; changes in building au-
tomation software without re-commissioning
and/or adaptation of management layer
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Thus, ensuring data integrity is the first important
step in data analytics and FDD. Data analytics - in-
cluding the verification of data integrity - and its
setup process can be significantly improved by com-
bining measurement data (i.e., time series data) with
semantic models, e.g., metadata about building ge-
ometries, building automation systems, components.
Based on the knowledge contained within semantic
models, data can be automatically checked for integ-
rity, similar to what a human expert would do.

There are two key questions when assessing data in-
tegrity checks: (i) To what extent are the available se-
mantic models applicable to set up and configure
data integrity checks - both conceptually and in real-
world project settings? (ii) Which data integrity
check methods qualify through their broad applica-
bility, high reliability and manageable computational
needs for an implementation in practice.

There is a functional overlap between the data integ-
rity checks investigated and widespread analytic so-
lutions such as rule based FDD. However, the investi-
gated methods are intended for specific tasks and
strictly limited to data integrity verification, i.e.,
checking plausibility only. Checking for plausibility
only has the distinct advantage that no prior
knowledge is required about the building’s usage and
the correct design of its plants. This facilitates auto-
matic testing - ideally, this can take place without
any building- or plant-specific tuning. The main dis-
advantage of this approach is that the checks will not
detect faults other than implausible behavior: the
checks do not verify whether the systems operation
is reasonable (e.g., inefficient system operation, un-
reasonable comfort setpoints, ...).

Figure 1 shows a high-level overview of a data ana-
lytics workflow from «data collection», «merging»
(unification and central storage), data pre-pro-
cessing and data cleaning to subsequent checks. The
checks considered in this paper are clearly distin-
guished from preceding classical checks regarding
data acquisition, detection of data gaps and associ-
ated imputation, pre-processing, outlier detections
and data cleaning. On the other hand, a separation
shall be made to subsequent checks like e.g., checking
design/dimensioning or comfort end energy by
methods such as classical rule based FDD checks.

2. Methods

2.1 Processing and storing time series data

Dealing with data from multiple sources can become
complicated. Understanding the data, extracting, and
transferring it to a central storage location is the first
step in a data warehouse architecture [1]. Figure 2
represents a simplified representation of such a data
workflow which includes as first steps the «data col-
lection», «merging» and «pre-processing/data clean-
ing» of the data. Although the scope of this paper lies
in the subsequent «data integrity checks», these first
three steps are essential because each data integrity

check as well as other subsequent checks such as e.g.,
FDD requires dedicated pre-processed data: Some
methods rely on raw data, others rely on «resampled
data» or «cleaned data» and further methods on
«resampled and cleaned data».

Data Data
collection collection
Source A Source B

Merging

Data pre-processing /
data cleaning

Data integrity checks

Subsequent checks
e.g. FDD,
design and dimensioning,
comfort and energy

Fig. 1 - High-level overview of a data analytics workflow
with incorporated data integrity checks.

Time series data processing steps such as correc-
tion/flagging of bad quality data or data resampling
may profoundly affect the results of data integrity
checks. Therefore, it is important to outline the dif-
ferent states of the data and the preprocessing steps
that take place in between. Based on [1] and [2], a
general data processing procedure is outlined in Fig-
ure 2, where each bucket represents a storage con-
taining data in a particular state. The rectangular
boxes in between represent the processing steps, in-
cluding the activities required to transform the data.

2.2 Data check workflow

Following the general data analytics workflow intro-
duced above, data integrity checks as well as other
checks can be performed using different kind of pro-
cessed data (buckets). Figure 2 shows a possible data
processing pipeline including checks of several types.
Data integrity checks are colored blue, checks out-
side the paper’s scope have a grey background. The
data integrity checks investigated focus on plausibil-
ity using semantic information. The required seman-
tic data is indicated in the yellow boxes.
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Fig. 2 - Data check workflow (blue boxes: checks con-
sidered in the paper, yellow boxes: semantic model in-
formation, grey boxes: checks outside the paper’s scope,
white buckets: data storages).

If a data integrity check fails, further analyses such as
FDD do not make sense in general, as they would pro-
duce erroneous results. Failed data integrity checks
should therefore tag erroneous data and subsequent
checks should consequently evaluate such quality
tags.

2.3 Development environment

For prototyping and evaluation of data integrity
check algorithms, a software test environment was
designed and used for preprocessing and storing
time series data, corresponding semantic model data
access, and automated execution of data integrity
checks. The software development environment con-
sists of three main parts:

e Time series database: InfluxDB

e Graph database to store semantic information,
also known as metadata: GraphDB

e Data workflow management platform to auto-
mate checks: Apache Airflow

Both databases and the data workflow management
platform used to automate were put into operation
on an Amazon Web Services (AWS). Time series data
is exported daily from building automation and

control systems (BACS) and stored in an AWS data
lake. A script (run on an AWS server) processes and
stores the pre-processed data. The pre-processed
data corresponds to the bucket «4.2 Resampled
cleaned data» in Figure 2. Another script ingests the
data finally to the time series database.

The main hub is the workflow management platform.
[t performs periodic checks and stores and visualizes
the results. The data for the checks are obtained di-
rectly from the two databases. The platform executes
a chain of operations and analysis steps (data pipe-
line), where the output of an operation becomes the
input to another [5].

2.4 Data sets

Two different data sets representing building auto-
mation data from two buildings in Vienna were used
for the project. These buildings are part of the ongo-
ing research project «Aspern Smart City Research»
(https://www.ascr.at/en/).

e Student home for 300 students
The BACS includes room control, heat distribu-
tion (from district heating), ventilation as well as
the electrical energy management of photovol-
taic power plant and electric battery.

e  Office building, ca. 8000 square meters
The BACS includes room control, heat and cold
distribution and storage using a thermally acti-
vated building system, heat and cold generation
using a heat pump, ventilation as well as the
electrical and thermal energy management.

Since the buildings have been used in a large-scale
research project already, a lot of data, knowledge,
and information are available - much more than
what is typically available in regular building auto-
mation projects. Therefore, data integrity check re-
sults can be applied and evaluated using multiple
years of operational data and assessed in more detail
based on the knowledge previously gathered.

2.5 Data integrity checks

Most of the investigated data integrity tests were rel-
atively simple rule-based methods based on statisti-
cal properties of the time series data, tailored to the
considered application. All checks as well as data
base access and basic visualization were imple-
mented in Python. A statistical feature framework
was developed for flexible and broad application of
signal comparison operations. With customizable
and extendable sets of conditions, statistical features,
and actual tests, it is possible to design a custom data
integrity check using the developed framework. The
suggested procedure is divided in 4 steps which are
summarized as follows:

1. Define conditions on data: Multiple conditions
on multiple time series can be combined such
that the timestamps, where all conditions are
fulfilled, are flagged as valid. Consecutive valid
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timestamps are forming valid ranges.

2. Calculate a list of selectable statistical features
such as mean, standard deviation, polynomial fit
parameters representing the valid time ranges
(either calculate the features for each entire
valid range or using a moving window within
each valid range).

3. Use a methods collection to execute the appro-
priate test on the calculated features representa-
tion.

4. Visualize the outcome with the help of dedicated
visualization methods.

2.6 Semantic Modeling of Building Technology
and Automation

Time series data can only be evaluated and analyzed
if they are used in the context of the real plant. The
data only becomes meaningful, understandable, and
usable with so-called metadata. The goal is for the
data to be self-describing, so that it can be used to
add value without a great deal of manual effort. The
intent of a semantic models for building automation
and technology is to provide such information in a
defined structured form so that it can be processed
automatically by machines. The data check workflow
presented in Figure 2 is an example of where seman-
tic information can be used. Today, most building an-
alytics applications are still mapped to the time se-
ries data (at least in part) manually, which is time
consuming and error prone. Sematic models have the
potential to improve this situation radically. Particu-
larly important semantic model content for analytics
applications is relational information such as supply
chains, zones/command groups, locations, or control
functional interactions (e.g, relations between con-
trollers, control variables, setpoints, manipulated
variables).

One approach to describe semantic information is to
create ontologies (schemas) and describe instance
data using these schemas. W3C provides standard-
ized technologies such as RDF and OWL for that pur-
pose and SPARQL for querying RDF data. There is no
standardized ontology for the building automation
domain, though several ontologies have been pub-
lished by academia and various community groups
[6, 7, 8]. We used our own ontology that - unlike the
ones referenced - focuses on a functional description
of the building automation system. The instance data
can be exported from a building automation engi-
neering tool or automatically generated from BACnet
scans of systems that have been engineered with that
tool. The building automation control application
contains a lot of information relevant for data analyt-
ics (including data integrity checks). It is obvious that
making this knowledge machine-readable and using
it for analytics is highly advantageous compared to
an analytics mapping process as described above.

Figure 3 shows a simple example of the functional
model representing one part of a room thermostat
(knowledge graph containing points, functions, loca-
tions, and relationships between them).

3. Results

In this section, a small extract of potential data integ-
rity checks is given, as well as one concrete example
check result for the three investigated test types.

3.1 Data integrity check collection

Data integrity checks are preferably based on seman-
tic models. While a comprehensive analysis of se-
mantic data models is beyond the scope of this paper,
the proposed approach is bottom-up: First, potential
checks are considered which are meaningful and
profitable. In a further step, it is analyzed which
metadata are necessary for the check. Thus, a state-
ment is then possible as to which data is missing in
the available semantic models and which data is most
important to be added from a practical point of view.
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Fig. 3 - Functional semantic model instance example.

Different data integrity checks for building automa-
tion data have been derived from literature (see [3],
[4]) and developed by our own. Here, we provide a
small extract of the collection in Table 1.

Tab. 1 - Extract of the data integrity check collection.

Test type  Test description

Signal Minimal room air quality measurement
dynamic over longer time periods should be close to
property outside air concentration.

Signal Room air quality measurements should ex-
dynamic hibit a daily cycle when observed for a

property longer period of time.

Signal Room temperature measurement reacts on
reaction radiator valve position change when heat
is provided by associated heat group.

Signal Room brightness sensor measurement re-

reaction acts on light command/modulation
change.

Signal Supply air temperature measurement re-

reaction acts on heating coil valve position change

when heat is provided by the associated
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heat group and air flow is provided by the
associated air handling unit.

Signal Time series temperature measurements be-

similarity ~ fore and after air treatment steps in air han-
dling units must be similar when air treat-
ment is turned off and fan is running.

3.4 Single signal check example

Single signal checks are applied to one single meas-
ured / recorded time series. Additional information
might be used such as geographical location and local
time (e.g, to calculate solar position).

Example: Finding convenient locations for room
temperature sensors is often not easy. The measure-
ments might be influenced in an undesired way by in-
ternal or external heat gains. Single signal checks for
room temperature measurements can detect such
cases by assessing dynamic properties of the time se-
ries. For room temperatures, checking for unreason-
able spikes is an adequate test.

Application of such tests to room temperature meas-
urements of the office building introduced in 2.4 re-
sulted in mostly passed checks. However, there were
rooms which showed short positive spikes during 7-
8pm local time in summer. An example time series of
such a room temperature is given in Figure 4. Such
spikes can lead - depending on the HVAC control - to
unnecessary heavy cooling activity. To prevent this,
either the sensor can be relocated, or the control pro-
gram can be changed.

N
o

violation

N N
S w

N
w

temperature [°C]

S
3

no

N
[y

N
[=)]

—— moving min
moving max

N
w

temperature [°C]
N N
w S

N
N

/‘lﬂ \ \
TAVAVA WS

! o o - L \f \‘h
21
© © Al Al > > o 9 Q
& 6 o 6P o WP 6 WP o7
S Y @ @Y % @ ™ 0 e

Fig. 4 - Example of failed room temperature single sig-
nal check. The difference between moving window min-
ima and moving window maxima are used to identify
peaks in the time series.

The assumed reason for the spikes (which was con-
firmed later) was exposure of the sensors to direct
sunlight (because the blinds would have been

—— data test range [Y€S

controlled open in the evening). Using the semantic
information of the room fagade orientation, the as-
sumption could also be consolidated (all the con-
cerned rooms had western orientation). Even further
consolidation is possible when additional measure-
ments such as solar radiation or brightness is incor-
porated in the test (which of course makes the check
no longer a single signal test).

3.3 Signal similarity check example

Signal similarity tests check whether two time series
are similar at certain points/ranges in time. They can
be used to test signal similarities. In the simplest
case, there are several sensors with which the same
variable is measured. It can then be checked whether
the signals are similar. In building automation, how-
ever, this case is typically rare, since redundancy is
associated with additional costs. An example of such
test methods is that of heat or cold meters, where the
flow and return temperatures are measured by the
meter as well as by separate sensors for control. In
this case, the similarity only should be checked when
the heat/cold fluid is circulating. Additional condi-
tions for checking depend on the installation setup
(e.g., heat meter on primary or secondary side).

In most cases, two signals are similar under specific
conditions only, e.g., flow and return temperatures of
a heat exchanger when no heat is transferred, or air
temperature / humidity measurements before and
after an inactive air treatment aggregate, such as
temperature measurements before and after the
heating coil.

Example: Redundant temperature measurements
(heat meter & control temperature reading) in vari-
ous heating circuits have been investigated based on
data from the buildings introduced in 2.4. Figure 5
shows an example result for a flow temperature sim-
ilarity test: The heat meter flow temperature meas-
urement has a low resolution of 1 K and a relatively
low sampling rate compared to the sensor used for
control. Time periods where the similarity test
passed are colored green, periods where the test
failed are colored red. During all other time periods,
the test was not applicable (i.e., conditions were not
met). As can be seen, the example shows a high de-
gree of similarity.

In practice, it can happen that heat meters are config-
ured wrongly, e.g., the addresses of two heat meters
are mixed up. Similarity tests can detect such miscon-
figurations. In the heating system of the school build-
ing (see 2.4), there are five main heat groups which
are operated using similar schedules and setpoints.
Nevertheless, the presented similarity test proved to
be able to detect (artificially) misconfigured meters
in all cases.
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Fig. 5 - Example of passed heating circuit flow temper-
ature similarity check. The test fails if the difference in
the two signals is too large for a minimal amount of con-
secutive timesteps.

3.2 Reaction check example

Signal reaction tests check whether a time series pro-
vides an expected response due to an event.

Example: A valve operation reaction test checks for
plausible behavior regarding the operation of a tem-
perature control valve / valve actuator in building
automation. The checks are based on time series data
of the valve command, temperature readings and the
operating state of the associated pump. The check
passes if the signals correspond to what is defined as
plausible; it fails if this is not the case. Reasons for the
check to fail:

e The valve is stuck (open, close, mid position)

e There is a fault in one of the sensors or sensor
installation used to measure the required data

e There is a fault in the pump associated to the
valve

e There is a fault in the measurement processing
chain (including data recording)

e There is a fault in the mapping or labeling of the
data

The checks are assumed to be particularly helpful for
valves/valve actuators without position feedback
signal. Ideally, the check can be applied broadly to
different types of valves and applications using typi-
cally available time series data. Very common appli-
cations are heating or cooling mixing circuits, but
also room temperature control valves.

A practical room automation example of a failed test
is shown in Figure 6. In this case, a concrete core con-
ditioning system is operated by opening and closing
heating and cooling valves - the data comes from the
office building, see 2.4. The figure shows a few days
in August 2020 (cooling season). Time periods with
opened cooling valve are indicated by green areas.
The cooling command marked by dashed red lines
was identified as failed by the applied reaction test:

Despite the opening command of the valve (and flow
temperature provided by the cooling circuit suffi-
ciently low), there is no reaction visible in the con-
crete core temperature. The test result proved to be
correct. The reason was found to be a fault in the
commanding of the valve actuator by the room con-
troller leading to sporadically non-executed com-
mands. The fault could be fixed by a software update
of the room controller.
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Fig. 6 - Example of failed cooling valve reaction check.

4. Conclusions

Data integrity checks are of great benefit to enhance
the quality of subsequent data analyses and increase
confidence in the data (as well as the plant operation
the data reflects). These checks can be considered as
the first part in a data analytics process. But they can
even be beneficial as stand-alone tests.

There are several data integrity checks that are con-
sidered promising in practice. However, a thorough
evaluation of their performance would require ap-
plying the checks to many more (labeled) data sets
than has been possible. Most of the investigated / de-
veloped methods are potentially broadly applicable
(different buildings, control application, ...) and can
be performed from the beginning of building opera-
tion, which means they can be useful already in the
commissioning phase. No training with historical
data is needed. The challenges in the practical appli-
cation of the checks lie mostly in the robust and
broadly applicable design of the test methods. Cur-
rently, e.g., a reaction test must be configured for the
expected reaction speed (which cannot be easily de-
rived from semantic information).

The main prerequisite for successful application of
data integrity checks is that they can be set up with
minimal effort and executed periodically. In order to
achieve a high degree of automation in setting up the
checks, semantic data is of great importance, because
it is only through them that the recorded time series
data are given context and meaning. The semantic
models we used were automatically generated from
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the building automation control solution. Therefore,
these models are already rich in automation infor-
mation. Currently not yet contained aspects in these
models are some cross-plant relationships, particu-
larly supply chain relationships, which are used in
many of the data integrity checks studied. Fortu-
nately, in many cases, such relationships are con-
tained in the control program to implement demand-
driven control, which means this information can be
added to the semantic models. Other missing aspects
such as hydraulic topology or equipment specifica-
tion typically are not needed for control and there-
fore would have to be incorporated using other data
sources such as BIM. However, many of the checks
studied can be set up and executed without this ad-
ditional information. Furthermore, semantic models
that include control functions are also useful for sub-
sequent analytics applications [9].

5. Outlook

The results stimulate the development and applica-
tion of «plausibility check» type data integrity tests.
With the valuable knowledge and experience gained,
a systematic process will be followed in the future:
Based on the complemented and evaluated integrity
checks collection, checks with the highest potential
benefits will be selected for further analysis. The de-
velopment of the selected checks will then focus on
broad and robust application. Automation, reporting
and visualization of the checks are then prototyped,
and successful methods will be applied outside of
limited test data sets.
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