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Abstract. This study aims to understand the relationship between indoor temperature, 
physiological signals, thermal sensation, and productivity and to estimate the occupant’s 
productivity. A series of human experiments were conducted with 48 participants, and local 
skin temperatures, heart rate, and thermal sensation data were collected in 6 temperature 
conditions. OSPAN (Operation Span Task) was used to measure the occupant’s productivity and 
the LightGBM algorithm was used to generate a predictive model. The result verified that there 
is a significant correlation between certain local body skin temperatures and the occupant’s 
productivity, and the overall thermal sensation between high and low performing groups was 
significantly different by gender and BMI groups. The result suggested gender, BMI, and two 
local skin temperatures as effective factors to predict the occupant’s productivity.  
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1. Introduction
People spend most of their time indoors these days 
which were extended further due to the ongoing 
pandemic [1], and the indoor environment quality 
became more critical for the occupant’s health and 
productivity in the buildings. Many studies 
demonstrated that the thermal environment has a 
strong impact on the occupant’s emotions, 
behaviors, and productivity [2], and a comfortable 
indoor thermal environment showed a positive 
relationship with the occupant’s given task [3,4].  

Currently, predefined models, such as PMV, are used 
to control the thermal environment of the buildings. 
However, it doesn’t consider individual occupant’s 
characteristics and preferences, thus it has shown 
limitations to satisfy each occupant’s preference and 
improve their productivity [5]. Considering thermal 
environment control, human physiological signal, 
such as local body skin temperature, heart rate, and 
EEG, has a significant impact on the occupant’s 
thermal sensation [6] and it was also verified as an 
effective factor to predict the occupant’s thermal 
sensation and comfort [7–9]. However, only a few 
studies dealt with the human physiological signals, 
thermal sensation, and the occupant’s productivity 
under limited experiment conditions, thus further 
studies are required. Therefore, the purpose of this 
study is to investigate a relationship between 
indoor temperature, human physiological signals, 

thermal sensation, and productivity and to establish 
a productivity prediction model as a function of the 
occupant’s physiological signals.       

2. Methodology
2.1 Experiment equipment 

The list of the sensors and their specifications are 
described in Table 1. A dry-bulb temperature and 
relative humidity were recorded by HOBO sensors, 
and a wire-type surface temperature sensor was 
used to measure the participant’s skin temperature. 
A chest band type sensor was used to monitor the 
heart rate. The collected data was recorded on the 
laptop.     

Tab. 1 – Specifications for data collection devices. 
Device Model Specification 

Dry bulb 
temp. 

U12-
012 

Accuracy: ± 0.35°C (from 0 
to 50°C, Resolution: 0.03°C 

RH U12-
012 

Accuracy: ± 2.5% (from 10 
to 90%, Resolution: 0.05%) 

Skin 
temp. 

SBS-
BTA 

Accuracy: ± 0.5°C, 
Resolution: 0.03°C 

HR HER-
BTA 

Transmission frequency: 
5kHz ±10% 
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2.2 Experiment room 

The experiment room was located at Lawrence 
Technological University (LTU) in Michigan, USA. 
The size was 3 m (W) × 5 m (D) × 3 m (H) and there 
was one south-east facing window. The central 
HVAC system was disabled during the experiment, 
and the room temperature was controlled by the 
independent heating and cooling system with two 
nozzles. Each nozzle was placed at the opposite 
corner to prevent direct airflow to the participant, 
and a general office chair and desk were provided in 
the room (Figure 1). The Venetian blind covered the 
window to minimize the impact of the daylight.    

Fig. 1 – Experiment room plan. 

2.3 Productivity test 

Operation Span Task (OSPAN) was used to measure 
the participant’s working memory capacity as a 
productivity measurement. Working memory 
supports temporary storage and manipulation of 
the information for comprehensive cognitive tasks 
in daily works [10], which is critical to 
understanding productivity. In the OSPAN, the 
participant needs to answer a simple math question 
by selecting ‘Yes’ or ‘No’ (e.g. 1+1=3, Yes or No?) and 
then needs to read and memorize a random letter 
(e.g. A or T). After a random series of math 
questions and letters (Maximum 6), the participant 
needs to select the letter (s) in chronological order. 
This set was repeated 20 times.       

2.4 Experiment procedure 

A series of human experiments were conducted that 
was approved by the Institutional Review Board at 
LTU (IRB #01418). Every participant was asked to 
wear basic clothes (Clo level 0.55 or 0.59; Long-
sleeve tee or shirts, long pants, socks, underwear, 
bra). The participant was assigned to 6 experiment 
conditions randomly (18°C, 20°C, 22°C, 24°C, 26°C, 
and 28°C). The temperature was controlled the 
same during the experiment, and every data was 
recorded every minute. 

Once arrived, the participant waited 20 minutes in 
the designated area to neutralize their physical 
status, while taking the survey and signing the IRB 
consent form. Once entered the room, the 
participant sat on the chair and attached the 
required sensors to their body spots. This study 
used a total of 8 local body spots (Forehead, neck, 

chest, arm, wrist (in), wrist (back), and belly) and 
heart rate as a physiological signal. When they were 
ready, the participant took the first survey about 
overall thermal sensation. The Likert 7-point scale 
question from the ASHRAE PMV was used (Table 2). 
Then, the participant took the OSPAN task and one 
more thermal sensation survey.  

Tab. 2 – Thermal sensation questionnaire 

-3 -2 -1 0 1 2 3 

Cold Cool Slightly 
cool Neutral Slightly 

warm Warm Hot 

2.5 Data analysis and predictive model 

The collected data were analysed by multiple 
statistical methods, including T-test, correlation 
analysis, etc. Minitab and Microsoft Excel were used 
as initial analysis tools. Based on the analysis, 
LightGBM (Light Gradient Boosting Machine) was 
used to generate a predictive model. LightGBM is an 
improved version of the GBM model which was 
designed for faster training speed and high 
efficiency, accuracy, and to support GPU learning 
[11]. The boosting algorithm is an ensemble method 
that combines several sequential models to improve 
the performance of prediction or classification. The 
gradient boosting method is one way to adapt 
boosting algorithm that focuses on the important 
weights. LightGBM algorithm is a gradient boosting 
framework that uses leaf-wise tree growth 
algorithms. This study adapted the LightGBM 
classifier model to predict OSPAN performance as a 
function of the participants’ physiological signals. 
The proposed model was trained in Python 3.8, 
TensorFlow-2.5.0 environment, and two Intel Zeon 
Silver 4215R CPUs, Nvidia GeForce 3090, 128G RAM 
Workstation were used.  

3. Results and discussions
3.1 Physiological signals and thermal 
environment  

50 participants’ data were collected and 48 datasets 
were analysed due to the recording errors. 
Demographic information including age, height, and 
weight was surveyed and no one reported a specific 
health issue. Most of the participants were students 
in their 20s (Avg. age: 23.1). Figure 2 and 3 

Fig. 2 – Interval plot of heart rate by the temp. group. 
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demonstrate the interval plot of local skin 
temperature and heart rate by the temperature 
group. It shows that local body skin temperatures 
and heart rate increased as the indoor temperature 
increased mostly. The correlation analysis showed 
(Table 3) that all physiological signals were 
correlated with the indoor temperature positively 
(p<0.001). Wrist (Out) and wrist (In) showed a 
relatively strong correlation than the others, while 
heart rate showed an insignificant correlation, due 
to relatively high heart rate in the temp. group 18. 

Tab. 3 – Correlation between temperature groups and 
physiological signals. 

Fore 
head Arm Wrist 

(in) 
Wrist 
(Out) 

Heart 
rate 

0.333 0.399 0.539 0.590 0.04 

Back Chest Neck Belly 

0.227 0.309 0.255 0.425 

The correlation analysis between overall thermal 
sensation (OTS) and physiological signals is shown 
in Table 4. Although it does not demonstrate general 
tendency, wrist (In) and wrist (Out) showed a 
significantly positive correlation with the OTS, 
demonstrating potential as an effective factor to 
predict thermal sensation and productivity.      

Tab. 4 – Correlation between OTS groups and 
physiological signals. 

Fore 
head Arm Wrist 

(in) 
Wrist 
(Out) 

Heart 
rate 

-0.016 0.266 0.476 0.544 -0.029

Back Chest Neck Belly 

0.043 0.166 -0.094 0.115

3.2 OSPAN result 

The average of the OSPAN appeared 88.5 out of 100, 
ranging from 55 to 100. Figure 4 demonstrates that 
the score is higher when the temperature is 

Fig. 5 – Interval plot of OSPAN score by the OTS and 
Gender group. 

Figure 6 demonstrates the OSPAN score by the OTS 
and BMI groups. Both groups showed higher scores 
when the participants felt cool or slightly cool, and 
both groups’ OTS were negatively correlated with 
the OSPAN score (Group 1: -0.269, Group 2: -0.395). 

Fig. 3 – Interval plot of local body skin temperature by the temperature group. 

Fig. 4 – Interval plot of OSPAN score by the 
temperature group. 

relatively low, and the correlation results verified its 
negative relationship (Pearson R: -0.225, P < 0.001). 
The relationship between OSPAN and OTS appeared 
similar which demonstrates that indoor 
temperature and thermal sensation are negatively 
correlated with the occupant’s productivity.  

Considering thermal comfort in the built 
environment, gender and BMI have a significant 
impact on the occupant’s thermal sensation. Figure 
5 shows the OSPAN score by the OTS and gender 
group. Both male and female groups showed higher 
performance when their OTS was lower, and both 
groups’ correlations appeared negative (Pearson R – 
Female: -0.207, Male: -0.278). 
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Considering the analysis result, it is clear that some 
human physiological signals are correlated with the 
occupants’ thermal perception. Also, both gender 
and BMI affect occupant’s thermal sensation, which 
has a significant impact on their performance on the 
given tasks. This demonstrates the potential of the 
human physiological signal as a factor to predict the 
occupant’s thermal comfort and productivity.  

Fig. 6 – Interval plot of OSPAN score by the OTS and 
BMI group (1: Healthy or underweight, 2: Overweight 
or beyond). 

3.3 Predictive model 

Based on the analysis, selective datasets were used 
to generate a predictive model for the occupant’s 
productivity as a function of human physiological 
signals. Original datasets included gender, BMI, local 
body skin temperatures, and heart rate as well as 
thermal sensation survey results. Considering that 
the wrist showed a relatively high correlation, as 
well as the practicality of the monitoring system 
(smartwatch and thermographic camera), wrist 
(Out), forehead, and heart rate was selected as input 
components. Also, the OSPAN score was divided into 
two groups, high and low performing groups, based 
on the average score.  

Table 5 shows the components of each dataset for 
the LightGBM classifier. Gender and BMI were the 
default component in each dataset, and the other 
components were randomly assigned. Total 7 
datasets were generated and tested to compare the 
predictive performance for high-performing and 
low-performing groups. The number of rows in the 
dataset was 10,075, and the number of each OSPAN 
group was 7,219 (High-performing) and 2,856 
(Low-performing) respectively. The data was split 
into the training set (66%) and the test set (33%). 
The number of the rows in the training set’s OSPAN 
group was 4,835 (High-performing) and 1,915 

(Low-performing), and the number of the rows in 
the test set’s OSPAN group was 2,384 (High-
performing) and 941 (Low-performing) 
respectively. 

Tab. 5 – Dataset component. 
Dataset Component Target 

Data 1 Gender, BMI, Wrist (Out) 

OSPAN 
High / 
Low 

Data 2 Gender, BMI, Forehead 

Data 3 Gender, BMI, Heart rate 

Data 4 Gender, BMI, Wrist (Out), 
Forehead 

Data 5 Gender, BMI, Wrist (Out), 
Heart rate 

Data 6 Gender, BMI, Forehead, 
Heart rate 

Data 7 Gender, BMI, Wrist (Out), 
Forehead, Heart rate 

Tab. 6 – Trained model accuracy. 

Dataset 
Accuracy 

(%) 
Dataset 

Accuracy 

(%) 

Data 1 92.87 Data 5 95.30 

Data 2 93.17 Data 6 97.14 

Data 3 81.2 Data 7 99.63 

Data 4 99.48 

Each dataset was used to train each model using the 
LightGBM algorithm. Table 6 shows the accuracy of 
each trained model. Overall models demonstrated 
relatively high predictive performance over 91% 
accuracy, except the model that the data 3 was used. 
The heart rate showed the lowest correlation to the 
OSPAN score in the prior analysis, thus, the accuracy 
appeared relatively lower than the others (81.2%). 
When every component was used, the accuracy was 
the highest at 99.63% respectively and for one 
component, data 2 demonstrated the highest 
accuracy at 93.17% respectively, among data 1 - 3. 
This result verifies that there is a significant 
relationship between certain human physiological 
signals and the occupant’s productivity, and its 

Fig. 7 – Decision tree of the dataset 4. 
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potential as a control factor for building’s thermal 
environment. Considering the practicality of using a 
thermographic camera and smartwatch, data 4 
showed the highest accuracy at 99.48% which is 
similar to the one from data 7. Figure 7 indicates the 
generated decision tree model based on dataset 4. 
This decision tree can be applied to the smart 
indoor temperature control system which can 
predict the occupant’s productivity and provide a 
personalized thermal environment for the 
occupant’s high productivity.   

4. Conclusions
This study aimed to understand the relationship 
between indoor temperature, human physiological 
signals, thermal sensation, and productivity and to 
develop a productivity prediction model as a 
function of the occupant’s physiological signals.  

The result verified that there is a negative 
correlation between certain local body skin 
temperatures and the occupant’s productivity, and 
the overall thermal sensation between high and low 
performing groups was significantly different by 
gender and BMI groups. The result suggested 
gender, BMI, and two local skin temperatures, wrist 
(out) and forehead, as effective factors to predict the 
occupant’s productivity by using the LightGBM 
algorithm. The findings of this study can be 
implemented in the smart thermal environment 
control system to provide optimum temperature 
conditions for the occupants’ high productivity.  

As a future study, various participant groups with 
larger sample sizes are required for other human 
factors, such as age and race, to increase the validity 
and accuracy of the results. Also, subjective factors, 
such as personal thermal preferences, cultural 
preferences, may affect thermal perception and 
productivity, so these factors should be studied in 
the future.        
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