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Abstract. Multiple studies have investigated and shown a theoretical potential in utilising Model 
Predictive Control (MPC) of residential heating systems to lower CO2-emissions. However, there 
are several practical issues in realising this potential. This paper reports on a simulation-based 
study focused on two of these issues both related to the data-based identification of a black-box 
state-space model for MPC. First, it is investigated how the measurement resolution of the heating 
energy consumption affects the precision of the model used for MPC. Second, the resolution anal-
ysis is combined with an investigation on whether it is possible to obtain appropriate models 
using data generated from excitation signals that in theory do not lead to occupant discomfort. 
The performance of the models was evaluated by combining different resolutions of data with 
different types of excitation signals. The results show that a Pseudo-Random Binary Sequence 
signal within a temperature span from 20 to 24 °C, and a time and data resolution of one hour 
and 0.1 kWh, respectively, of the heat consumption is expedient to ensure black-box models suf-
ficient for MPC purposes.  
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1. Introduction
The CO2-emissions from energy use for heating in 
buildings has a large impact on reaching EU climate 
goals of being climate neutral by 2050 [1]; in 2019, 
63.6 % of energy consumption in European house-
holds went to space heating [2]. In Denmark, and 
many other European countries, the heat supply is 
district heating. Therefore, district heating plays a 
large role in lowering the total energy consumption.  

Multiple simulation studies show that the CO2-emis-
sion from heating of buildings can be lowered 
through Model Predictive Control (MPC) of space 
heating systems. Knudsen and Petersen [3], compare 
a regular PID controller to an MPC, and find that MPC 
using  forecast of CO2-emissions as control signal lead 
to relatively large CO2-reductions. A similar outcome 
is reported by Pedersen, Hedegaard and Petersen [4] 
who demonstrate that the CO2-reducing effect of a 
similar MPC scheme on an apartment building is en-
hanced by energy retrofits. Avci et al. [5] compare 
MPC to a regular thermostat using both simulations 
and field tests and find that MPC lead to 5 % and 8 % 
energy reduction compared to the thermostat using 
fixed or variable temperature set points, respec-
tively. Prívara et al. [6] implement an MPC in a real 
university building and obtain energy savings of 17-
24 % compared to the original control system. Cigler 
et al. [7] use both simulation and a field test where 

they reach energy savings of 15 % and 28 % com-
pared to the original well-tuned control strategy. All 
these studies show a significant potential in MPC for 
lowering CO2-emissions from space heating. 

An important aspect of MPC for space heating is to 
obtain a thermodynamic model of the thermal zone 
to be heated. This model can be obtained in different 
ways but is typically involving a calibration process 
using heating data from the thermal zone. The reso-
lution of this data varies across studies. Knudsen and 
Petersen [3] and Pedersen, Hedegaard and Petersen 
[4] all use hourly time resolution of the heat load for 
their MPC, Avci et al. [5] use a sampling time of 15
minutes, and Cigler et al. [7] use a sampling interval
as low as five minutes. Yu et al. [8] evaluates sam-
pling times between 2.5 minutes and one hour. In 
most Danish households, the available heat con-
sumption data is truncated kWh on an hourly basis
as described in Kristensen and Petersen [9]. An ex-
ample of truncation is as follows. If the heat con-
sumption of hour 1 is 1.4 kWh, 1 kWh will be regis-
tered for hour 1, and 0.4 kWh will be added to the
next hour (hour 2). Consumption in hour 2 is 5.8 kWh
but as 0.4 was transferred from hour 1, a consump-
tion of 6 kWh will be registered for hour 2, and 0.2
kWh will be added the next hour (hour 3), and so on.
The question is whether this form of readily available
data is useful for generating a model for MPC – let
alone operate the heating system with MPC.
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The purpose of this study is therefore to investigate 
whether this truncated data is sufficient to create 
high performing models. Literature typically indicate 
that a high model accuracy is a model fit between 80 
% and 100 % [4,5,10], to name a few. However, for 
MPC purposes a model fit of approximately 70 % has 
been shown to be enough [11,12]. The investigation 
is performed by comparing the model performance 
from input with truncated data to input of finer reso-
lution data. The study will then determine which res-
olution is needed to create models with sufficient ac-
curacy for MPC purposes. 

2. Method
The following sections briefly describe the Ener-
gyPlus [13] model of the case building (section 2.1), 
the black-box model structure (section 2.2), the dif-
ferent excitation signals used for generating data for 
system identification (section 2.3), and heat con-
sumption datasets with different precision and reso-
lution (section 2.4).    

2.1 Case building 

The case building was a single-family residential 
building of 81 m2. Fig. 1 shows a floorplan and an il-
lustration of the building. A detailed description on 
the building construction is found in [14] (table 1). 
Three walls were exposed to the outdoors while the 
east wall was adiabatic. For the sake of simplicity, the 
building was modelled as one thermal zone, where 
internal walls were modelled as a heat capacity with 
the EnergyPlus class InternalMass. Windows and the 
living room door were modelled with a U-value of 
0.74 W/(m2K) and a solar heat gain coefficient of 0.5 
corresponding to a 3-layer low-E coated glazing, 
while the entrance door was modelled as non-trans-
parent with a U-value of 0.67 W/(m2K). 

Fig. 1 – Case building. Top: floorplan. Bottom: building 
illustration.  

The building was natural ventilated with a design 
ventilation rate of 0.21 l/s per m2, and a design infil-
tration rate of 0.09 l/s per m2, i.e. a total rate of 0.3 
l/s per m2 in accordance with the Danish building 

regulation [15]. The actual ventilation rates were cal-
culated by the EnergyPlus BLAST algorithm [16] 
leading to a ventilation rate that varies with wind-
speed and indoor/outdoor temperature difference. 
The heating system was managed with a PI-control-
ler, with a proportional band of 2 °C and an integral 
time of 600 seconds. The anti-windup technique con-
ditional integration (clamping) was modelled for the 
integration part. This was modelled with EnergyPlus 
EnergyManagerSystem:Program. The ground tem-
perature was modelled using default settings of the 
EnergyPlus class Foundation:Kiva, with exposed 
foundation perimeter set to the outer circumference 
of the case building. 

Weather data for the simulation was obtained from 
[17], a service providing EnergyPlus weather files for 
user-defined locations in Denmark. Data from 2018 
for a city near Aarhus (longitude: 10.0, latitude 
56.06) was used.  

2.2 Building model 

The model used for MPC purposes was assumed to be 
a black-box model formulated as the linear state 
space model given in equation (1) and (2). This for-
mulation is similar to the one in Knudsen and Pe-
tersen [10].  

x[k + 1] = Ax[k] + Bu[k] + Ke[k] 
y[k] = Cx[k] + e[k] 

(1) 
(2) 

where k is time step, x[k] ∈ ℝ𝑛𝑛 is system state, y[k] ∈
ℝ𝑝𝑝 is output (indoor air temperature [°C]), u[k] ∈ ℝ𝑚𝑚 
is input (outdoor temperature [°C], global horizontal 
solar irradiation [W/m2] and heat from building 
heating system [W]) and e[k] ∈ ℝ𝑝𝑝 is output predic-
tion error. A ∈ ℝ𝑛𝑛×𝑛𝑛 is state matrix, B ∈ ℝ𝑛𝑛×𝑚𝑚 is input 
matrix, K ∈ ℝ𝑛𝑛×𝑝𝑝 is Kalman gain matrix, C ∈ ℝ𝑝𝑝×𝑛𝑛 is 
output matrix. 

The matrices A, B, C and K were initially estimated 
with the MATLAB method N4SID and afterwards re-
fined with prediction error minimization (PEM). If 
PEM failed to create a model, the K-matrix from 
N4SID was replaced by a zero-matrix. The settings 
for N4SID and PEM are given in Tab. 1 and Tab. 2, re-
spectively. The settings were chosen because they 
provide the best accuracy of the model. Default set-
tings were used when nothing else was given.  

Tab. 1 – Chosen settings for N4SID. 

Setting Choice 

Form Companion 

Model order 2 

Time step (k) One hour 

Weight CVA 

Focus 

Horizon 

Simulation 

Auto 
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Tab. 2 – Chosen settings for PEM. 

Setting Choice 

Initial state Estimate 

Search method Lm 

Max iterations 500 

The model was calibrated and validated through 
winter and transitional seasons (September to May). 
The calibration and validation period depend on the 
excitation signals described in the following section.  

2.3 Excitation signals 

When training the models for MPC, most studies have 
used the excitation signal Pseudo Random Binary Se-
quence (PRBS) signal, which one would expect to 
lead to discomfort for the occupants due to the highly 
varying heat load from the heating system. Examples 
of studies using such a signal are [3,4,18]. A few stud-
ies such as [8,14,19] compare PRBS signals to other 
types of signals. Broholt et al. [14] compare the 
model performance of models calibrated with a PRBS 
signal to models calibrated with a night-boosting sig-
nal. They find the performance of models calibrated 
with a PRBS signal is only marginally better than 
models calibrated with a night-boosting signal. Yu et 
al. [8] evaluate model performance of models trained 
with a night set-back signal and validated with a 
PRBS signal. They conclude that the night set-back 
signal is a good excitation signal. Knudsen et al. [19] 
compare the performance of an MPC based on a PRBS 
signal with an MPC based on an MPC signal. They find 
no significant difference in the performances.  

The effect of excitation on the model accuracy was 
tested in this study by evaluating two types of excita-
tion signals: The typically used PRBS signal, and a 
Night Boost (NB) signal like a signal usually observed 
in previously mentioned MPC studies. Two types of 
PRBS signals were tested:  

1) lower and upper bound of 20 °C and 24 °C,
respectively (see example in Fig. 2).

2) bounds between 21 °C and 23 °C.
There are different ways to design a PRBS signal to 
excite the heating system in buildings; Yu et al. [8] 
follow the guidelines of IEA EBC Annex 58 [21] that 
proposes to combine two different PRBS signals to 
identify both short and long time constants in a build-
ing using a short (e.g. 20 min.) and a long (e.g. 20 
hour) period (T). Hedegaard et al. [20] also ensures a 
signal that identify the short and long time constants 
in the building. In this study, T is set to one hour. The 
goal is to train models for MPC that adjust heating 
setpoint on hourly basis, why a control signal with a 
T below one hour is not relevant. Models were both 
calibrated and validated with data where the heating 
system was excited with a PRBS signal. The calibra-
tion period with PRBS signal was the first 382 hours 
(15.9 days) each month (September-May), equal to a 
combination of two full-length PRBS signals of sev-
enth and eighth order. The validation period was the 
last 255 hours (10.6 days) of each month, equal to a 

full length PRBS signal of eighth order. 

Fig. 2 – Example of the PRBS signal (first 48 hours of the 
seventh order signal). 

Four different types of NB signals were constructed: 
1) Boosting to 24 °C from 3 a.m. to 5 a.m. (see

example in Fig. 3)
2) Boosting to 23 °C from 3 a.m. to 5 a.m.
3) Boosting to 24 °C from 1 a.m. to 5 a.m.
4) Boosting to 23 °C from 1 a.m. to 5 a.m.

For all four signals, the temperature set point was 22 
°C outside the boosting period. The calibration pe-
riod with NB signals was the first 16 days each 
month, and the validation period was the last 11 days 
each month. The same NB signal was used in the cal-
ibration and validation period. Furthermore, the 
models calibrated with a NB signal was also validated 
with a PRBS signal, as the PRBS signal is considered 
a more thorough test of calibrated models’ capabili-
ties.   

Fig. 3 – 48 hours of a NB signal.  

2.4 Heat load data 

We tested six different datasets of truncated heat 
consumption [kWh] to evaluate the impact on model 
performance:  

1) 15-minute truncation for every 0.1 kWh
(benchmark).

2) 15-minute truncation for every kWh.
3) 30-minute truncation for every 0.1 kWh.
4) 30-minut truncation for every kWh.
5) 1-hour truncation for every 0.1 kWh.
6) 1-hour truncation for every kWh (typical

resolution in Danish district heat meters).

3 of 8



Fig. 4 – Example of the effect of truncation of the six evaluated datasets. 

Fig. 4 illustrates how the six different precisions and 
resolutions varies using simulated one-minute con-
sumption data from the case building on the last day 
of March. Temperature set point was kept constant 
at 22 °C. The datasets were created from the one-mi-
nute consumptions by summing all values within the 
given timestep and thereafter truncating the data, to 
recreate what the typical Danish heat meters would 
deliver.  

3. Results
This section evaluates the performance of the black-
box model described in section 2.2 when calibrating 
with a PRBS signal (see section 3.1) and with a NB 
signal (see section 3.2). The model performance is 

given by its ability to predict the indoor temperature 
24 hours ahead in accordance with what would be 
appropriate for an MPC control. The model accuracy 
is described with the Root Mean Square Error 
(RMSE) [°C] and the Normalized Root Mean Square 
Error (NRMSE) [%]. The tables in this section show 
results from the six datasets described in section 2.4, 
when the models are calibrated and validated within 
the same month.  

3.1 PRBS signals 

Tab. 3 and Tab. 4 show the results for models cali-
brated and validated with a PRBS signal between 20 
°C and 24 °C, and between 21 °C and 23 °C, respec-
tively.  

Tab. 3 – RMSE [°C] / NRMSE [%] with PRBS signal between 20 °C and 24 °C. Green: NRMSE > 70 %, yellow: NRMSE 70-
50 %, and red: NRMSE < 50 %.  

Jan Feb Mar Apr May Sep Oct Nov Dec 

1 
ho

ur
 1 

kWh 
0.8 / 1.0 / 0.6 / 1.3 / 0.4 / 0.7 / 1.3 / 2.0 / 0.6 / 
57 49 65 11 77 41 -2 1 69 

0.1 
kWh 

0.4 / 0.7 / 0.4 / 0.9 / 0.3 / 0.6 / 0.6 / 0.8 / 0.2 / 
79 64 80 40 84 48 56 60 89 

30
 m

in
. 1 

kWh 
1.0 / 1.6 / 0.9 / 1.0 / 0.3 / 0.8 / 0.9 / 1.2 / 0.9 / 
47 13 49 30 80 29 29 36 55 

0.1 
kWh 

0.5 / 0.7 / 0.4 / 0.7 / 0.3 / 0.6 / 0.6 / 1.0 / 0.3 / 
75 65 79 49 84 49 53 50 85 

15
 m

in
. 1 

kWh 
1.0 / 1.6 / 1.1 / 1.1 / 0.3 / 0.8 / 

28 
1.4 / 1.1 / 1.0 / 

43 13 37 18 79 -16 42 46 
0.1 
kWh 

0.7 / 0.6 / 0.4 / 0.6 / 0.3 / 0.7 / 
38 

0.6 / 0.9 / 0.3 / 
61 64 78 57 81 54 51 83 
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Tab. 4 – RMSE [°C] / NRMSE [%] with PRBS signal between 21 °C and 23 °C Green: NRMSE > 70 %, yellow: NRMSE 70-50 
%, and red: NRMSE < 50 %. 

Jan Feb Mar Apr May Sep Oct Nov Dec 
1 

ho
ur

 1 
kWh 

0.7 / 0.8 / 0.7 / 1.0 / 0.4 / 0.6 / 1.2 / 0.8 / 0.6 / 
28 22 34 28 77 45 -20 16 42 

0.1 
kWh 

0.3 / 0.5 / 0.3 / 0.7 / 0.3 / 0.6 / 0.5 / 0.5 / 0.2 / 
69 47 68 50 84 46 48 50 84 

30
 m

in
. 1 

kWh 
0.7 / 1.0 / 0.9 / 0.9 / 0.4 / 0.7 / 1.3 / 0.7 / 0.9 / 
26 -3 8 31 76 34 -31 28 6 

0.1 
kWh 

0.3 / 0.5 / 0.3 / 0.5 / 0.3 / 0.6 / 0.6 / 0.5 / 0.2 / 
67 49 66 61 84 43 45 52 80 

15
 m

in
. 1 

kWh 
0.8 / 1.1 / 0.9 / 1.1 / 0.5 / 0.7 / 

32 
1.3 / 1.1 / 0.8 / 

22 -18 12 21 72 -33 -12 22 
0.1 
kWh 

0.6 / 0.5 / 0.4 / 0.5 / 0.3 / 0.7 / 
30 

0.6 / 0.6 / 0.2 / 
43 47 64 61 84 44 42 76 

Tab. 3 and Tab. 4 both show that the model accuracy 
is higher with truncation to 0.1 kWh compared to 
truncation to 1 kWh and nothing is gained from 
choosing a finer timestep than one hour. Further-
more, it is seen that a little higher accuracy is reached 
using a higher temperature fluctuation (Tab. 3) com-
pared to the small temperature fluctuation (Tab. 4) 
when comparing NRMSE, while the RMSE is almost 
the same. The NRMSE indicate that the  

model accuracy is only appropriate for MPC (>70 %) 
in maximum four of the nine evaluated months. 

3.2 Night boost signals 

Tab. 5 and Tab. 6 show the results when then model 
is calibrated with a NB signal, boosting to 24 °C for 
two and four hours, respectively, and validated with 
a PRBS signal between 20 °C and 24 °C.  

Tab. 5 – RMSE [°C] / NRMSE [%] when calibrating with NB signal; 2 hour boost to 24 °C and validating with PRBS signal 
between 20 °C and 24 °C . Green: NRMSE > 70 %, yellow: NRMSE 70-50 %, and red: NRMSE < 50 %. 

Jan Feb Mar Apr May Sep Oct Nov Dec 

1 
ho

ur
 1 

kWh 
1.2 / 1.4 / 1.3 / 1.1 / 0.3 / 0.9 / 0.8 / 1.4 / 3.0 / 
35 27 31 26 81 19 40 31 -54

0.1 
kWh 

0.6 / 0.7 / 0.7 / 0.5 / 0.3 / 0.8 / 0.5 / 0.5 / 0.5 / 
66 63 61 64 83 31 59 76 76 

30
 m

in
. 1 

kWh 
1.8 / 1.5 / 2.0 / 1.6 / 0.3 / 1.0 / 1.0 / 1.7 / 2.4 / 

2 17 -12 -15 82 11 20 10 -28
0.1 
kWh 

0.8 / 0.7 / 0.7 / 0.5 / 0.3 / 0.7 / 0.6 / 0.5 / 0.5 / 
58 62 58 64 81 37 57 73 72 

15
 m

in
. 1 

kWh 
1.4 / 1.5 / 1.4 / 1.2 / 0.3 / 1.0 / 

11 
1.0 / 2.0 / 1.5 / 

21 15 17 15 81 21 -7 17 
0.1 
kWh 

0.8 / 0.7 / 0.9 / 0.5 / 0.3 / 0.8 / 
28 

0.6 / 0.7 / 0.5 / 
58 60 49 63 84 55 65 70 

Tab. 6 – RMSE [°C] / NRMSE [%] when calibrating with NB signal; 4 hour boost to 24 °C and validating with PRBS signal 
between 20 °C and 24 °C . Green: NRMSE > 70 %, yellow: NRMSE 70-50 %, and red: NRMSE < 50 %. 

Jan Feb Mar Apr May Sep Oct Nov Dec 

1 
ho

ur
 1 

kWh 
1.1 / 1.5 / 1.3 / 1.1 / 0.3 / 0.8 / 0.8 / 1.9 / 1.1 / 
40 20 28 22 80 31 41 2 42 

0.1 
kWh 

0.9 / 0.7 / 0.9 / 0.5 / 0.3 / 0.7 / 0.5 / 0.5 / 0.5 / 
53 61 49 63 83 40 60 75 75 

30
 m

in
. 1 

kWh 
1.6 / 1.6 / 1.5 / 1.1 / 0.4 / 0.9 / 1.0 / 2.8 / 1.4 / 
14 14 14 18 79 23 21 -43 25 

0.1 
kWh 

0.8 / 0.7 / 0.9 / 0.5 / 0.3 / 0.6 / 0.6 / 0.6 / 0.6 / 
55 62 51 62 84 42 55 71 67 

15
 m

in
. 1 

kWh 
1.4 / 1.5 / 1.4 / 1.3 / 0.3 / 0.8 / 

29 
1.0 / 3.3 / 1.5 / 

24 17 21 9 81 17 -74 18 
0.1 
kWh 

0.8 / 0.7 / 0.9 / 0.5 / 0.3 / 0.7 / 
32 

0.6 / 0.6 / 0.6 / 
54 59 50 61 82 53 67 66 
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The same tendency as when calibrating with the 
PRBS signals can be observed: the models perform 
better with truncation to 0.1 kWh compared to 1 
kWh while nothing is gained from choosing a finer 
timestep than one hour. The results of a smaller tem-
perature fluctuation are not shown in a table, but the 
tendencies are the same: the mean and standard de-
viation of the RMSE/NRMSE across the nine months, 
when boosting for 2 hours to 23 °C and validating 
with a PRBS signal between 21 °C and 23 °C, is 0.8 ± 
0.2 °C/ 27 ± 23 %, 0.8 ± 0.2 °C/ 24 ± 24 %, and 0.9 ± 
0.3 °C/ 12 ± 34 % when truncating to 1 kWh with 
timestep 1 hour, 30 min., and 15 min., respectively. 
While the mean and standard deviation of the 
RMSE/NRMSE, when truncating to 0.1 kWh, is 0.5 ± 
0.3 °C/ 52 ± 23 %, 0.5 ± 0.3 °C/ 50 ± 20 %, and 0.7 ± 
0.4 °C/ 28 ± 41 %, respectively.  

A comparison of the results in Tab. 5 to the results in 
Tab. 6 show that little to nothing is gained in relation 
to model accuracy from boosting the temperature for 
four hours (Tab. 6) instead of two hours (Tab. 5). 
Only in September (with a timestep of one hour and 
truncation to 0.1 kWh) do we see a little higher 
NRMSE. 

Tab. 7 and Tab. 8 show the results for models cali-
brated and validated with a NB signal boosting to 24 
°C for two and four hours, respectively. These results 
also show a tendency of the model accuracy being 
higher when truncating to 0.1 kWh compared to 
truncation to 1 kWh. The model accuracy does not in-
crease when using a finer timestep than one hour. 
The results with a boost to 23 °C show the same 
tendencies as well; the mean and standard deviation 
of the RMSE/NRMSE across the nine months, when 
boosting for two hours, is 0.5 ± 0.2 °C/ 0 ± 54 %, 0.5 
± 0.2 °C/ -7 ±62 %, and 0.5 ± 0.4 °C/ -3 ± 93 when 
truncating to 1 kWh with timestep 1 hour, 30 min., 
and 15 min., respectively. The mean and standard de-
viation of the RMSE/NRMSE, when truncating to 0.1 
kWh, is 0.5 ± 0.3 °C/ 9 ± 50 %, 0.4 ± 0.2 °C/23 ± 38 %, 
and 0.5 ± 0.3 °C/-9 ± 100 %, respectively. 

A comparison of results from Tab. 7 and Tab. 8 to re-
sults from Tab. 3 and Tab. 4 show that models cali-
brated with a simple NB signal does not perform as 
good as models calibrated with the more fluctuating 
PRBS signal, not even when the validation signal is 
simple too.  

Tab. 7 – RMSE [°C] / NRMSE [%] with NB signal; 2 hour boost to 24 °C. Green: NRMSE > 70 %, yellow: NRMSE 70-50 %, 
and red: NRMSE < 50 %. 

Jan Feb Mar Apr May Sep Oct Nov Dec 

1 
ho

ur
 1 

kWh 
0.4 / 0.8 / 0.6 / 0.9 / 0.3 / 0.6 / 0.7 / 1.0 / 0.6 / 
23 -42 -3 33 81 40 12 -76 -9

0.1 
kWh 

0.3 / 0.4 / 0.3 / 0.4 / 0.3 / 0.5 / 0.5 / 0.2 / 0.1 / 
43 24 49 69 84 51 35 64 79 

30
 m

in
. 1 

kWh 
0.7 / 0.8 / 0.7 / 1.2 / 0.3 / 0.7 / 1.2 / 1.2 / 0.5 / 
-21 -37 -8 9 82 30 -54 -111 1 

0.1 
kWh 

0.4 / 0.4 / 0.3 / 0.4 / 0.3 / 0.4 / 0.5 / 0.2 / 0.1 / 
27 35 46 68 81 58 37 67 75 

15
 m

in
. 1 

kWh 
0.5 / 0.7 / 0.6 / 1.0 / 0.3 / 0.8 / 

29 
1.1 / 1.4 / 0.5 / 

12 -26 7 24 81 -40 -152 2 
0.1 
kWh 

0.4 / 0.4 / 0.4 / 0.4 / 0.3 / 0.5 / 
48 

0.5 / 0.2 / 0.2 / 
28 33 32 68 83 35 58 68 

Tab. 8 – RMSE [°C] / NRMSE [%] with NB signal; 4 hour boost to 24 °C. Green: NRMSE > 70 %, yellow: NRMSE 70-50 %, 
and red: NRMSE < 50 %. 

Jan Feb Mar Apr May Sep Oct Nov Dec 

1 
ho

ur
 1 

kWh 
0.5 / 1.0 / 0.9 / 1.0 / 0.3 / 0.6 / 0.7 / 2.0 / 0.5 / 
35 -38 -11 29 81 42 25 -167 39 

0.1 
kWh 

0.5 / 0.5 / 0.5 / 0.5 / 0.3 / 0.5 / 0.5 / 0.2 / 0.1 / 
36 33 43 67 83 53 46 69 83 

30
 m

in
. 1 

kWh 
0.7 / 1.0 / 1.1 / 1.0 / 0.3 / 0.8 / 1.2 / 2.6 / 0.6 / 

3 -33 -39 27 80 33 -27 -246 23 
0.1 
kWh 

0.4 / 0.4 / 0.4 / 0.5 / 0.3 / 0.4 / 0.5 / 0.2 / 0.1 / 
40 46 48 67 84 60 45 73 80 

15
 m

in
. 1 

kWh 
0.6 / 0.7 / 0.6 / 1.1 / 0.3 / 0.7 / 

38 
1.1 / 2.9 / 0.7 / 

24 0 19 18 82 -23 -287 9 
0.1 
kWh 

0.4 / 0.4 / 0.4 / 0.5 / 0.3 / 0.5 / 
51 

0.5 / 0.2 / 0.2 / 
41 44 45 66 82 43 71 77 
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4. Discussion
The results of 24-hours ahead predictions indicate 
that model accuracy increases significantly when 
heat load is truncated to 0.1 kWh instead of 1 kWh. 
This is also the case for 1-hour ahead prediction: 
Models calibrated and validated with a PRBS signal 
between 20 °C and 24 °C and truncation to 1 kWh led 
to a mean and standard deviation across the nine 
months of 35 ± 39 % while truncation to 0.1 kWh led 
to a mean and standard deviation across the nine 
months of 83 ± 9 %. The latter accuracy corresponds 
to other studies using 1-step ahead predictions, e.g. 
[4,5,10], where the NRMSE are between 80 % and 
100 %. However, in [10], they have high performing 
models for one-step ahead as well as 24-step ahead 
predictions. This may be due to their choice of inputs. 
For example, they use the solar radiation on the win-
dow surface which highly correlates with the room 
temperature. In this study we chose the global solar 
radiation as this is easily measured compared to the 
solar radiation on the window surfaces.  

In general, the models perform much better in some 
months (the heating season November-March) com-
pared to other months (e.g. April and September). 
This could indicate that the models are not robust to 
changes in the input data; in the heating season the 
outdoor conditions do not change significantly. In 
May, the heat load is zero most of the month which 
can explain why the truncation does not have an ef-
fect here. In April and September, the outdoor condi-
tions change from the calibration period to the vali-
dation period which is why the model accuracy may 
be reduced in these months. However, the RMSE is 
below 1 °C in most cases.  

5. Conclusion
The purpose of this paper was twofold. First, it was 
to evaluate how the data resolution on the heating 
energy consumption affected the ability of a black-
box model to predict the indoor temperature 24 
hours ahead. The model accuracy is of high im-
portance when performing MPC. The results showed 
that the resolution of the data itself had a larger effect 
than the time resolution of the data. Meaning that 
data changed from the commonly used resolution of 
1 kWh to a resolution of 0.1 kWh led to a higher in-
crease in NRMSE and reduction in RMSE compared 
to a change in timestep (comparing one hour, 30 
min., and 15 min. timesteps). Therefore, a one-hour 
timestep with a 0.1 kWh data resolution seems ap-
propriate for MPC. Furthermore, this means that the 
typically used data measurements in Denmark (one 
hour and 1 kWh resolution) does not have to be 
changed much for an MPC to be possible in Danish 
households.  

The second purpose of the paper was to investigate 
whether sufficient black-box models could be ob-
tained from data generated with an excitation signal 
which in theory does not lead to occupant discomfort 
(NB signal). This was done by comparing the 

performance of black-box models calibrated with an 
NB signal to black-box models calibrated with the 
commonly used and more fluctuating PRBS signal. 
The results showed that the model accuracy, in terms 
of NRMSE, was highest when calibrating and validat-
ing with a PRBS signal with a temperature span be-
tween 20 °C and 24 °C. However, the narrow temper-
ature span (21-23 °C) gave similar results, in terms 
of RMSE. When calibrating with an NB signal, the 
model accuracy falls in terms of NRMSE, while the 
RMSE is kept below 1 °C for all cases with truncation 
to 0.1 kWh and one hour time step. Further investi-
gation of simple excitation signals, which theoreti-
cally lead to less discomfort compared to the highly 
fluctuating PRBS signal, could be a potential next 
step.  
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