
A Multi-Domain Approach to Explanatory and 
Predictive Thermal Comfort Modelling in Offices 
Eugene Mamulova a, Henk W. Brink a, b, Marcel G. L. C. Loomans a, Roel C. G. M. Loonen a, 
Helianthe S. M. Kort a 
a Eindhoven University of Technology, Eindhoven, the Netherlands, e.mamulova@tue.nl. 
b Hanze University of Applied Sciences, Groningen, the Netherlands, h.w.brink@pl.hanze.nl. 

Abstract. It is well known that physical variables, such as temperature, exert a significant 
influence on occupants' thermal comfort in office buildings. Despite this knowledge, models that 
are currently used to predict thermal comfort fail to do so accurately, resulting in a mismatch 
between design conditions and actual thermal comfort conditions. The assumption is that 
exclusive attention to physical variables is insufficient for understanding or predicting thermal 
comfort. Contextual, social and personal variables may also affect thermal comfort in office 
buildings and interact with each other. The question arises as to how a multi-domain approach 
can aid in explaining and predicting thermal comfort in offices. In this study, a unique dataset 
containing indoor environment, demographic, occupancy and personality related variables is 
used to construct two types of thermal comfort models. The dataset contains 524 observations, 
collected during summertime in two office buildings in the Netherlands. Firstly, structural 
equation modelling (SEM) is used to construct an explanatory model, with the aim to identify 
significant variables affecting thermal comfort, as well as the interactions between them. 
Secondly, machine learning is used to train four binary classification models to predict thermal 
discomfort. For the investigated cases, SEM suggests that thermal discomfort is significantly 
affected by (i) temperature, (ii) sound pressure level, (iii) the interaction between temperature, 
sound pressure level and illuminance, and (iv) the interaction between gregariousness and 
occupancy count. The four predictive models are subsequently trained using only the significant 
variables. Nevertheless, the weighted F1-score for all four models ranges between 0.55 and 0.59, 
indicating weak predictive performance. The results show that significant influencers are not 
necessarily good predictors of thermal discomfort. Future researchers are encouraged to 
combine explanatory and predictive modelling techniques, in order to test whether variables that 
are relevant to the domain are useful for prediction. 
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1. Introduction
Thermal comfort is that condition of mind that 
expresses satisfaction with the thermal environment 
[1]. Building engineers refer to building standards to 
predict the thermal comfort conditions for a given 
design [1,2]. However, current standards do not 
always produce adequate thermal comfort 
predictions [3]. For example, the most prominent 
model for predicting thermal comfort in office 
buildings, Fanger’s PMV, does not consider the 
influence of non-thermal influences and does not 
account for interactions between influences [4]. 
Recent research efforts have focused on multi-
domain approaches that treat thermal comfort as a 
combination of variables belonging to four domains, 
which are outlined in Fig. 1 [5].  

1.1 research background

Researchers in the field of thermal comfort seek to 
understand and predict thermal comfort. The former 
deploy explanatory models, while the latter use 
predictive models. Explanatory models typically 
employ statistical techniques that provide insight 
into what influences thermal comfort in offices. 
Predictive models are built to forecast the thermal 
comfort conditions for a given office space. The 
relevance of social, contextual and personal factors is 
apparent but their presence in existing thermal 
comfort models is limited [6]. The combined 
presence of all four domains is almost non-existent 
[6]. Moreover, the majority of existing studies focus 
on explanatory modelling [6]. As a result, the 
research community has yet to identify a prominent 
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multi-domain model for predicting thermal comfort 
in offices. The absence of a comprehensive predictive 
model causes stagnation in the engineering sector, as 
building engineers rely on sub-optimal models to 
meet thermal comfort regulations.   

Fig. 1 - Physical, social, contextual and personal 
variables present in literature, adapted from [5]. 

The rift between design conditions and real-world 
thermal conditions is in part attributable to the 
absence of a suitable thermal comfort model. In 
consequence, it is important to pursue better 
prediction of thermal comfort in office buildings and 
it is worthwhile doing so using the multi-domain 
approach.  This study looks at existing thermal 
comfort models to identify potential variables from 
multiple domains that may aid in better explaining 
and prediciting thermal comfort in offices.  

1.2 thermal comfort variables 

Existing multi-domain studies identify several 
variables that are of interest to thermal comfort 
modelling. A list of main effects and interaction 
effects that are supported or rejected by existing 
research on multi-domain thermal comfort in offices 
is composed [6]. Based on these findings, a series of 
hypotheses on the direct effects Mi and the indirect 
effects Ii on thermal (dis)comfort are constructed. 
For example, existing studies suggest that sound 
exerts a direct effect on thermal discomfort. Existing 
research also suggests that the effect of temperature 
dominates other physical aspects. Several studies 
show that individual personality traits, such as 
extraversion, may have both a direct and indirect 
influence on thermal discomfort. The current study 
uses gregariousness and assertiveness to represent 
extraversion. Occupant assertiveness is a facet of 
extraversion that reflects a person’s willingness to 
take charge, while occupant gregariousness is a facet 
of extraversion that reflects a person’s disposition to 
be sociable.  

The focus of the study is on thermal discomfort 
during the cooling season and the hypotheses are: 

𝑀𝑀1: Air temperature exerts a positive, exponential, 
effect on thermal discomfort. 

𝑀𝑀2: Sound pressure exerts a positive effect on 
thermal discomfort. 

𝑀𝑀3: Occupant gregariousness exerts a negative 
effect on thermal discomfort. 

𝐼𝐼1:   Air temperature exerts a negative effect on the 
interaction effect between sound pressure level 
and illuminance on thermal discomfort. 

𝐼𝐼2:   Occupant assertiveness exerts a positive effect 
on the effect of air temperature on thermal 
discomfort. 

𝐼𝐼3:   Occupancy count exerts a positive effect on the 
effect of occupant gregariousness on thermal 
discomfort. 

The aforementioned hypotheses are tested via an 
explanatory model, using field measurement data. 
The results are used to train a model that aims to 
predict whether office employees are experiencing 
thermal comfort or discomfort. The articulation of 
the modelling outcome is unprecedented in current 
literature, covering three physical variables (air 
temperature, illuminance and sound pressure level), 
one contextual variable (occupancy count), two 
personal variables (occupant assertiveness and 
gregariousness) and one social variable (gender), in 
the interest of testing whether such a multi-domain 
approach can aid in a better understanding or 
prediction of thermal (dis)comfort in offices.  

2. Research methods
The data was collected prior to this study, in two 
office buildings in the Netherlands. The cross-
sectional campaign was conducted during the years 
2015-2018. The applied measurement protocol is 
described in a publication by Brink and Mobach [7]. 
The data points used in this study are limited to the 
warmer months of June and July 2016. 623 office 
employees participated in the measurements. A 
summary of the demographics is available in 
Appendix A. The final sample size is equal to 522, of 
which 493 participants have a sedentary occupation. 
Their metabolic rate is assumed to be constant. The 
clothing insulation value is calculated according to 
the ASHRAE-55-2017 standard [1]. Adaptive 
opportunities such as clothing (𝑁𝑁 = 352), 
temperature control (𝑁𝑁 = 125) and operable 
windows (𝑁𝑁 = 515) are available to the participants. 
However, perceived control and adaptive behaviour 
are not recorded and are thus excluded from the 
study. The measurement procedure consists of 
objective and subjective measurements. Most 
objective measurements, such as physical and 
contextual observations, are performed by the 
experiment leader. Subjective data concerning the 
social and personal domains, as well as occupants’ 
thermal perception, is collected via an online 
questionnaire. The items are available in appendix B. 
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2.1 explanatory modelling 

Explanatory modelling is performed via structural 
equation modelling (SEM); a covariance-based 
technique that enables the inclusion of observable 
and unobservable variables. The latter is important, 
since the model includes personality traits, which are 
unobservable constructs, modelled using a set of 
questionnaire items. An additional advantage of SEM 
is the graphical aspect that allows the user to 
visualize relationships between the variables. This is 
done using standard LISREL matrix notation [8]. The 
computation is performed via the lavaan package [9].  

Tab. 1 provides an overview of the variables used, 
along with their notation. Variables 𝑇𝑇𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑆𝑆𝑆𝑆, 𝐸𝐸 and 
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜  are continuous. Variables 𝑎𝑎1 − 𝑎𝑎2 and 𝑔𝑔1 − 𝑔𝑔4 
are ordinal. All variables are normalized using min-
max feature scaling. To account for multivariate non-
normality, robust diagonally weighted least squares 
(DWLS) estimation, known as weighted least square 
mean and variance adjusted estimation (WLSMV) in 
lavaan, is used to compute the parameter estimates, 
robust standard errors and fit indices. Several fit 
indices are used to evaluate DWLS estimation for 
ordinal data, namely the Root Mean Square Error of 
Approximation (RMSEA), the Bentler Comparative 
Fit Index (CFI) and the Standardized Root Mean 
Square Residual (SRMSR). 

2.2 predictive modelling 

The predictive model takes the form of a binary 
classifier that predicts whether a participant is 
experiencing thermal comfort or discomfort. The 
variables included in the model are listed in Tab.2. 
Two linear and two non-linear classification 
algorithms are selected and trained using the 
scikitlearn Python library [10]. P0 is used for linear 
algorithms, while P1 is used for non-linear 
algorithms, as the latter are expected to capture non-
linear relationships. The linear algorithms are 
logistic regression (LR) and linear support-vector 
machine (L-SVM), while the non-linear algorithms 
are random forest ensemble (RF) and non-linear 
support-vector machine that uses the radial basis 
function kernel (RBF-SVM).  

The four models are trained using 231 observations 
and validated using 77 observations. A search space 
is proposed for each model, with the objective to 
maximize the weighted F1-score, while also tuning 
the models’ respective regularization coefficients. 
The search is performed on the training set, with 5-
fold cross validation yielding the average weighted 
F1-score to be maximized. It is performed using the 
popular Tree of Parzen Estimators (TPE) algorithm 
which suggests future hyper-parameter choices 
based on the previous results [11]. 3,000 hyper- 

Tab. 1 – Direct and indirect effects included in the SEM model. 
Effect Domain Symbol SEM Variable Range [unit] 

Direct 

Physical 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑖𝑖𝑖𝑖  𝑒𝑒8  Air temperature 20 – 26 [oC] 

SPL 

E 

𝑒𝑒9  Sound pressure level  

Illuminancea 

40 – 70 [dB(A)] 

0 – 2,000 [lx] 

Personal 

𝑔𝑔1 𝑒𝑒1  Gregariousness  

𝑔𝑔2 𝑒𝑒2  Gregariousness 

𝑔𝑔3 𝑒𝑒3  Gregariousness  

ℎ1 𝑦𝑦1 General body discomfort 

ℎ2 𝑦𝑦2 Lower body discomfort  

ℎ3 𝑦𝑦3 Upper body discomfort  

Indirect 

Physical 𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝐸𝐸 ⋅ 𝑇𝑇𝑖𝑖𝑖𝑖 𝑒𝑒10 Sound, illuminance and temperature 

Physical and 
personal 

𝑇𝑇𝑖𝑖𝑖𝑖 ⋅ 𝑎𝑎1 𝑒𝑒4  Temperature and assertiveness  

𝑇𝑇𝑖𝑖𝑖𝑖 ⋅ 𝑎𝑎2 𝑒𝑒5  Temperature and assertiveness  

Contextual 
and personal 

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝑔𝑔1 𝑒𝑒6  Occupancy count and gregariousness 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 <  20  

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝑔𝑔4 𝑒𝑒7  Occupancy count and gregariousness] 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 <  20  

a  The direct effect of illuminance is excluded but illuminance is used to compute 𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝐸𝐸 ⋅ 𝑇𝑇𝑖𝑖𝑖𝑖. 
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parameter choices are evaluated for each model and 
the highest score is selected. During the testing 
phase, the four models are retrained on 308 
observations, comprising the training and validation 
sets, and are then tested on the remaining 77 
observations. Common classification metrics such as 
the F1-score, accuracy (ACC) and the area under the 
ROC curve (AUC) are used. The aforementioned 
metrics are based on elements of the confusion 
matrix; true-positive predictions (TP), true-negative 
predictions (TN), false-positive predictions (FP) and 
false-negative predictions (FN). The higher the 
number of true predictions, the higher the scores. 

Tab. 2 – Variables used for prediction. 
Variable Symbol 

Indoor temperature exponent P0 

Indoor temperature P1 

Sound pressure level P2 

Sound × illuminance × temperature P3 

Gregariousness × occupancy count P4 

Gender P5 

3. Results
3.1 structural equation modelling 

Fig. 2 - Graphical representation of model estimation. 

The outcome of the explanatory modelling phase is a 
SEM model. Fig. 2 shows the parameter estimates, 
variance/covariance estimates and factor loadings 
for the explanatory model. The model fit is 
summarized in Tab. 3. According to the fit indices, 
the model constitutes an acceptable fit, indicating 
that the model is capable of explaining thermal 
comfort in relation to the data.    

Tab. 3 – Fit indices used to evaluate the SEM model. 

Fit Index Value 

𝐶𝐶𝐶𝐶𝐼𝐼  0.956a 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑅𝑅  0.075b 

𝐶𝐶𝐼𝐼𝑙𝑙𝑜𝑜𝑙𝑙 0.064b 

𝐶𝐶𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ 0.087a 

𝑆𝑆𝑅𝑅𝑀𝑀𝑅𝑅 0.037a 

a  Good. 
b  Acceptable. 

The parameter estimates are shown in Tab. 4. The 
exponent of air temperature 𝑒𝑒8 is expected to have a 
positive effect on thermal discomfort η1. According 
to the results, the effect of 𝑒𝑒8 on η1 is positive (see 
Fig. 2)  and significant at 99.9% confidence (z>3.09, 
p<0.001). Sound pressure level 𝑒𝑒9 is expected to 
exert a positive effect on η1. The main effect of sound 
pressure level 𝑒𝑒9 is found to be positive and 
significant at approximately 98% confidence 
(z>2.33, p<0.02).  

Tab. 4 – Parameter estimates for the thermal comfort 
variables included in the SEM model. 

Estimate SE Z P(<|z|) 

𝑒𝑒8  0.643 0.203 3.177 0.001a 

𝑒𝑒9  0.357 0.151 2.368 0.018b 

𝑒𝑒10 -0.383 0.196 -1.951 0.051c 

𝜉𝜉1 -0.128 0.174 -0.736 0.462 

𝜉𝜉2 0.104 0.382 0.272 0.785 

𝜉𝜉3 0.394 0.198 1.988 0.047c 

a  CI – 99.9%. 
b  CI – 98%.  
c  CI – 95%. 

The interaction between indoor temperature, sound 
pressure level and illuminance 𝑒𝑒10 is expected to 
exert a negative effect on η1, such that an increase in 
indoor temperature will result in a decreased audio-
visual influence. The parameter estimate for the 
three-way interaction 𝑒𝑒10 is found to be negative and 
significant at 95% confidence (z>1.96, p<0.05). 
Gregariousness 𝑒𝑒1 is expected to exert a negative 
effect on η1. The effect of 𝑒𝑒1 on η1 is found to be 
negative but it is not found to be significant. The 
interaction between assertiveness and indoor 
temperature 𝑒𝑒2 is expected to be positive, to the 
extent that an increase in temperature will result in 
an increased influence of assertiveness on η1. The 
two-way interaction 𝑒𝑒2 is found to be positive but it 
is not found to be significant. The interaction 
between gregariousness and occupancy count 𝑒𝑒3 is 
expected to be positive, such that an increase in 
occupancy count will result in an increased influence 
of gregariousness on η1. The two-way interaction 𝑒𝑒3 
is found to be significant at approximately 95% 
confidence (z>1.96, p<0.05). As a result, hypotheses 
𝑀𝑀1, 𝑀𝑀2, 𝐼𝐼1 and 𝐼𝐼3 are not rejected. 
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3.2 binary classification 

The outcome of the predictive modelling phase are 
four models; LR, L-SVM, RF and RBF-SVM. LR is fitted 
as shown in equation (1). The polarity of the 
parameter estimates is consistent with hypotheses 
𝑀𝑀1, 𝑀𝑀2, 𝐼𝐼1 and 𝐼𝐼3, suggesting the model learned a 
similar pattern to the one captured using SEM.  

𝑆𝑆(𝑌𝑌 = 1|𝑋𝑋) (1) 

= 𝑒𝑒𝑒𝑒𝑒𝑒(−0.27+0.29𝑋𝑋0+0.30𝑋𝑋2−0.13𝑋𝑋3+0.17𝑋𝑋4+0.23𝑋𝑋5)
1+𝑒𝑒𝑒𝑒𝑒𝑒(−0.27+0.29𝑋𝑋0+0.30𝑋𝑋2−0.13𝑋𝑋3+0.17𝑋𝑋4+0.23𝑋𝑋5)

Fig. 3 shows the confusion matrix, obtained by 
running LR, L-SVM, RF and RBF-SVM on the test set. 
The number of true predictions for the four models 
ranges between 42 and 46. The large number of false 
negative predictions, ranging between 19 and 25, 
suggests that all four models have difficulty 
predicting thermal discomfort.  

Fig. 3 – Confusion matrix for the test set. 

Tab. 5– Performance metrics (validation and testing). 
Model Set 𝑅𝑅𝐴𝐴𝐶𝐶 𝑅𝑅𝐶𝐶𝐶𝐶 𝐶𝐶1  

𝑆𝑆𝑅𝑅 Valid 0.58 0.56 0.53 

Test 0.68 0.56 0.56 

L-SVM Valid 0.58 0.61 0.61 

Test 0.67 0.55 0.55 

RF Valid 0.62 0.60 0.60 

Test 0.64 0.58 0.59 

RBF-SVM Valid 0.57 0.52 0.48 

Test 0.66 0.57 0.58 

The performance metrics for the validation and 
testing phases are reported in Tab. 5. The difference 
in performance across the models is very slight and 
all four models yield similar scores across all three 
metrics. While L-SVM and RF show better ACC and 
weighted F1 on the validation set, they no longer 
outperform the other models on the test set. The 
increase in ACC during the testing phase for all four  

predictive models could be attributed to random 
variation between data splits. The predictive 
performance of the models is just above random 
guessing (= 0.50) and is not sufficient for predicting 
thermal (dis)comfort. 

4. Explaining thermal comfort
The interpretation of the SEM model addresses the 
hypotheses 𝑀𝑀1 −𝑀𝑀3 and 𝐼𝐼1 − 𝐼𝐼3. The model 
estimates do not reject 𝑀𝑀1,𝑀𝑀2, 𝐼𝐼2 and 𝐼𝐼3, leading to 
several implications that may be of interest to the 
understanding of thermal comfort in offices: 

• During the cooling season, an increase in indoor 
temperature results in an exponential increase
in thermal discomfort. 

• An increase in sound pressure level results in an 
increase in thermal discomfort.

• An increase in air temperature decreases the
effect that the interaction between sound
pressure level and illuminance has on thermal
discomfort, resulting in a negative three-way 
interaction. 

• An increase in occupancy count increases the
effect of occupant gregariousness on thermal 
discomfort, resulting in a positive two-way
interaction. 

The fit indices and the polarity of the parameter 
estimates support the notion that the model may be 
used to explain thermal comfort. However, the 
existence of a near-equivalent model is likely. The 
reliability of the subjective data, particularly 
assertiveness and gregariousness, is questionable. A 
better fit may be achieved via the use of a more 
extensive and well-known scale, such as the IPIP-
NEO-120 [12]. 

5. Predicting thermal comfort
The SEM model suggests that P0-P5 significantly 
affect thermal comfort in offices. Yet, the four 
predictive models are not capable of adequately 
predicting thermal (dis)comfort. Looking at all four 
outcomes, the quality of the data may have 
introduced noise, masking the patterns necessary for 
making reliable predictions. However, real-world 
data is noisy and constitutes a pitfall for even the 
most prevalent models. A predictive model can be 
expected to perform even worse in practice than it 
does on the mother data set. The results show that 
thermal comfort is a complex, multi-domain 
construct that is difficult to predict. However, the 
performance of the four predictive models does not 
cast a definitive shadow over the prospect of 
accurate prediction. Predictive models that include a 
larger number of thermal comfort variables and 
higher quality subjective measurements may yield 
better predictions. Moreover, other, more advanced 
modelling techniques, such as stochastic modelling, 
may be better suited for thermal comfort prediction. 

TP
LR 22
L-SVM 28
RF 23
RBF-SVM 25

FN
LR 25
L-SVM 19
RF 24
RBF-SVM 22

FP
LR 9
L-SVM 12
RF 11
RBF-SVM 11
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LR 21
L-SVM 18
RF 19
RBF-SVM 19
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6. Conclusion
This study applies the multi-domain approach to 
thermal-comfort modelling. An explanatory model is 
constructed using SEM. The specified model 
examines the influence of indoor temperature, 
illuminance, sound pressure level, occupancy count, 
gregariousness and assertiveness on thermal 
discomfort. The SEM model is unique, as it is the first 
explanatory model, derived from field 
measurements, to include multiple physical and 
personal variables, while also including contextual 
variables. The following conclusions are derived 
from the explanatory model:  

• Thermal discomfort increases at higher indoor
temperatures and higher sound pressure levels,
suggesting that both should be optimized and
maintained during the design and operation
phase.

• Uncomfortably high indoor temperatures
decrease the effect that sound pressure level and 
illuminance otherwise have in a comfortable
thermal environment. This highlights the
importance of designing for optimal
temperature conditions and constitutes a basis
for the use of personalized heating and cooling
strategies to optimize individual temperature
conditions.

• Gregarious individuals may be more thermally
comfortable than non-gregarious individuals
when there are many occupants in the room.
While it is not feasible to obtain information on
personality traits during the design phase,
designers are encouraged to account for inter-
individual differences by providing flexible
working conditions.

Four predictive models LR, L-SVM, RF and RBF-SVM 
are trained using significant variables P0-P5. The 
models examine the predictive potential of the 
explanatory model. All models struggle to predict 
thermal (dis)comfort, despite the inclusion of 
significant thermal comfort variables. The results 
bring to light several conclusions: 

• Significant thermal comfort influences are not
always adequate predictors thereof. 

• Researchers are advised to precede future 
thermal comfort studies with explanatory
modelling, to facilitate the creation of predictive
models that contain a large variety of physical,
contextual, social and non-social variables.

• Combined use of explanatory and predictive
modelling is necessary, to test whether
variables considered in thermal comfort
research hold theoretical relevance, predictive
potential, both or, perhaps, neither. 

This study is part of a broader research effort to 
achieve better prediction of thermal comfort in 
offices, which is an essential step in the building 
design process. The results formulate a basis for 
further research on the influence of indoor climate, 
occupancy and personality traits on thermal comfort 
in offices, as well as the interaction between the 
different influences. Moreover, the findings have 
direct implications for the engineering sector, as they 
suggest that influences such as sound pressure level, 
occupancy and personality traits, should be 
considered when designing for optimal thermal 
conditions.  

6.1 limitations 

This research is subject to several limitations, the 
mitigation of which is encouraged in the future. 
Firstly, prominent variables such as correlated 
colour temperature and air velocity are not included 
in the study. Similarly, variables such as age, relative 
humidity, clothing insulation and metabolic rate are 
excluded due to insufficient variability in the 
measured data. Secondly, extreme indoor conditions 
are not observed during field measurements. In 
addition, the measurements are limited to summer 
conditions in the context of the Netherlands and are 
not representative of cooler conditions or other 
climate regions. Due to this limitation, the 
relationship between temperature and thermal 
discomfort is assumed to be exponential. Future 
studies are encouraged to include cold sensation 
data and thereby model a parabolic relationship 
between temperature and thermal discomfort, 
where thermal discomfort increases at lower and 
higher temperatures both. Thirdly, the internal 
consistency of the personal variables is poor and 
they are not sufficiently representative of the Big 
Five personality traits. Lastly, the quality of the 
predictive models may be improved via the use of 
advanced hyper-parameter tuning, a larger variety of 
machine learning algorithms and more advanced 
modelling methods.  

7. Acknowledgement
The data is provided by the research group of Mark 
Mobach at the Hanze University of Applied Sciences. 
The authors acknowledge the contribution of Yasin 
Toparlar, Deerns Groep B.V. 

8. Data access statement
The dataset generated and analysed during the 
current study is available in the 4TU repository [13]. 

6 of 8



Appendix A 
Tab. A1 – Demographics for offices 1 and 2. 

Gender Office 1 Office 2 

μ ± σ 𝑁𝑁 μ ± σ 𝑁𝑁 

Male 154 88 

Age 43 ± 10 47 ± 8 

Clo 0.5 ± 0.1 0.4 ± 0.1 

Female 170 112 

Age 43 ± 10 45 ± 8 

Clo 0.5 ± 0.1 0.5 ± 0.2 

Appendix B 
Tab. B1 - Items, item scales and reliability concerning thermal comfort constructs. 

Construct Item Likert scale Cronbach’s alpha α 

Thermal discomfort  0.83 

General discomfort (heat) It is too hot in here now. 5-point 0.87 

Lower body discomfort I have warm feet. 5-point 0.71 

Upper body discomfort I have warm hands. 5-point 0.69 

Tab. B2 - Items, item scales and reliability concerning personality facets. 
Construct Item Likert scale Cronbach’s alpha α 

Gregariousness 0.55 

I prefer to work in a completely open space 
with several people. 

5-point 0.43 

I prefer to work alone in a room. (excluded) 5-point (R) 0.40 

I love working with others. (excluded) 5-point 0.47 

I involve my colleagues in carrying out my 
work. 

5-point 0.57 

Assertiveness 0.46 

I can always communicate in an open way. 5-point 

I adjust my job to the work of my colleagues. 5-point 
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