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Abstract. The rapid growth of electric vehicles (EVs) is stimulating their integration into the 

existing power grid to reduce power peaks and avoid grid congestion using smart charging 

strategies. Specifically, at commercial buildings, most EVs charge simultaneously in the morning 

resulting in large power peaks. This uncoordinated EV charging is changing the existing 

building load profile, which already fluctuates due to HVAC operations and PV fluctuations, 

significantly with their dominant charging load by amplifying power peaks. The changed 

building load profile of a single building does not influence the grid significantly, but the 

cumulative power peaks  at commercial buildings can cause grid congestion. Smart charging can 

solve this problem by regulating power rates of charging sessions to anticipate the electrical 

building load. Therefore, this research aims to evaluate individual EV charging load profiles, 

based on real-world data, and the smart charging potential to flatten the total electrical load of a 

case study. Daily charging load profiles are constituted with k-means data clustering techniques 

to obtain the general charging profiles of individual EVs for deploying smart charging strategies. 

Additionally, the HVAC load flexibility potential is explored to complement smart charging with 

load flattening. The smart charging potential showed promising results with individual power 

peak reductions up to 37.8% and an average power peak reduction of the total EV load of 

approximately 60%. 
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1. Introduction

Electric vehicles (EVs) are increasingly adopted as 
an alternative for internal combustion engine 
vehicles (ICEVs) to comply with the Paris 
Agreement on climate change aiming to reduce CO2 
emissions. It is expected that the Dutch EV fleet will 
increase from 0.21 million in 2021 to approximately 
4-5 million in 2035 [1-3]. Besides the rapid growth, 
EVs often charge at their maximum power rate until
the battery is fully charged, which can be
characterized as uncoordinated charging. The
growing EV fleet in combination with uncoordinated 
charging, result in an increasing power demand, 
power peaks and demand variability. For grid 
operators, it becomes more difficult to accurately 
predict the required load, which endangers the
reliability and quality of the power supply [4,5].
Specifically, at commercial buildings, EVs can create 
a problem since typical occupancy patterns are
noticeable, where employees arrive in the morning 
and depart late in the afternoon [6]. The occupancy 
pattern in combination with uncoordinated
charging results in power peaks in the morning and
long idle times in the afternoon. This uncoordinated 
EV charging is changing the existing building load 

profile, which already fluctuates due to HVAC 
operations and PV fluctuations, significantly with their 
dominant charging load by amplifying power peaks.  
However, EVs can offer significant load flexibility 
with smart charging and thereby regulate the 
voltage frequency of the grid or on a smaller scale 
the voltage frequency of a building [7,8]. The 
generally long idle times of EVs at commercial 
buildings enable load shifting by scheduling the load 
over the entire workday to flatten power peaks. 
Complementary to smart charging strategies, HVAC 
systems can assist with grid balancing by throttling 
the power rate without affecting occupants’ comfort 
[9,10]. Therefore, it is of major importance to gain 
knowledge about the individual EV charging 
behaviour and the potential load flexibility of HVAC 
systems to accomplish smart charging strategies. 

2. Literature review

This section describes some approaches that have 
been used for load profiling of EVs, smart charging 
scenario and the underlying assumptions that have 
been adopted.  

Real-world EV charging datasets are scarce, 
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resulting in research [11,12] that use travel patterns 
of conventional cars – often retrieved from national 
surveys – in combination with EV characteristics 
assumptions to constitute EV charging load profiles. 
Therefore, these studies could only rely on the 
parameter parking duration. and assumed other 
parameters, such as charging power, idle time and 
battery capacity. The assumptions of EV charging 
behaviour in these studies cause significant 
uncertainties. Fortunately, real-world data becomes 
widely available due to the increasing growth of EV 
adaptation. Researchers [13-17] have used 
historical data of EV charging events to constitute 
EV charging load profiles. The most important 
parameter found in the literature to constitute 
proper EV charging load profiles is the average 
charging power per time interval of maximum 15 
minutes. Other parameters, such as connection 
duration, charging time, idle time and energy 
consumption, can be obtained with the charging 
power per time interval. Moreover, the initial and 
final state of charge (SoC) are valuable parameters 
found in the literature [15-17]. These parameters 
are useful to schedule charging events and to 
determine the charging sequence with smart 
charging strategies. However, it should be noted 
that the availability of SoC values depends on the 
charging protocols. DC-chargers – used for fast 
chargers – can obtain SoC values, where AC-
chargers cannot obtain SoC values with the current 
widely applied IEC 61851-1 protocol. Fortunately, 
SoC values could be available for AC-chargers with 
the new ISO-15118-20 protocol and the cooperation 
of original equipment manufacturers (OEMs) in the 
near future [18]. In the existing literature, the 
generation of general EV load profiles are based on 
averages of large datasets and EV fleets. This paper 
distinguishes itself by collecting and evaluating the 
individual load profiles of EVs at a commercial 
building per weekday.  

After investigating the EV charging behaviour, smart 
charging scenarios can be constituted. Flattening 
power peaks to secure the reliability of the grid is 
the most important objective of smart charging. Ref. 
[4] investigated the impact of smart charging on the
transmission and distribution lines of Great-Britain. 
The smart charging focused on unidirectional 
charging with a maximum of 7 kW, an efficiency of
90% and charging based on SoC values and the
electricity price. According to this strategy, EVs
charge at off-peak hours when the electricity price is 
low. At peak hours when the prices are higher, EVs 
with a low SoC still charge at a higher rate, while
EVs with a higher SoC does not charge or charge at a
low rate. This smart charging strategy can reduce
network intervention from 28% to 9%. Ref. [8]
investigated peak shaving and valley filling of a
university building with an EV parking lot. The
study focused on a tool to monitor the occupancy at
the parking lot by registering the arrival and 
departure times of conventional cars. By knowing

the required energy for the next trip, based on user 
preference, and assuming that EVs have a battery 
capacity of 24 kWh and charge/discharge slowly, 
power peaks could be reduced by approximately 
20%. In addition to Ref. [8], Ref. [19] investigated 
the peak shaving and valley filling of the same 
university, but this time with PV panels. In the most 
ideal situation of this scenario, the power peak 
could be reduced by approximately 25%. Ref. [20] 
developed a smart charging/discharging schedule 
algorithm aiming to peak shave and valley fill the 
power load profile of the grid. This study considers 
several constraints related to EVs. First, charging 
and discharging rates must be within maximum and 
minimum values to avoid battery degradation. 
Second, batteries must be charged up to a maximum 
limit and discharged to a set depth of discharge 
(DOD). These limits can be set by the EV owner. In 
Ref. [21] a smart charging strategy is compared with 
uncontrolled charging. The smart charging strategy 
uses price signals and the SoC of the EVs as input to 
determine the charging power output, assuming an 
initial SoC of 20% and a charging rate of 6.6 kW.  

Most studies [7,19-21] use SoC values to constitute 
smart charging strategies, however, this paper 
purely focuses on historical EV charging rates and 
the interaction with the electrical building load. The 
historical charging rates are used to constitute EV 
charging load profiles, which are valuable to obtain 
a better understanding of the individual and 
aggregated charging behaviour, such as charging 
power, charging time, idle time and presence, 
without compromising the privacy and convenience 
of the EV owner. Not using SoC values is more 
representative to reality, since SoC values are 
currently not available with AC/DC charging due to 
a lack of protocols. Therefore, this paper 
distinguishes itself by investigating load profiles of 
individual and aggregated EVs, flattening the power 
demand using smart charging and by evaluating the 
energy flexibility capability of the HVAC system at a 
case study. To that end, the main contributions of 
this work can be summarized with the following 
research questions: 
• What are important parameters to constitute

appropriate EV charging load profiles?
• What are the characteristics of the individual 

and total EV charging loads at the case study? 
• How large is the smart charging potential of the

case study? 

The rest of the paper is organized as follows: Section 
3 describes the case study, methodology of load 
profiling and determination of the smart charging 
potential. The results of the smart charging 
potential and the HVAC flexibility are presented in 
Section 4. The discussion about the obtained results 
is presented in Section 5. Finally, conclusions are 
drawn, and recommendations are provided in 
Section 6. 
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Fig. 1 – Stepwise process of the research. 

3. Methodology

In this section, the process and used methods in this 
study are explained in detail. The sequence of the 
process is illustrated in Figure 1. 

3.1 Case study 

The office building of Kropman Breda is used as case 
study and can be characterized as a traditional 
Dutch office building. The HVAC system consists of a 
gas-fired boiler and an air handling unit (AHU) 
which controls the ventilation, cooling and 
humidification demand. Additionally, a photovoltaic 
(PV) system is installed in combination with a 
battery energy storage system (BESS) to increase 
self-consumption. Moreover, the case study contains 
two EV chargers each with two charging sockets. 
Both EV chargers are 3 phase 32 A and connected to 
a voltage of 230 V. Therefore, a single charger has a 
maximum power output of 22 kW (3 * 32 A * 230 V 
= 22,080 W = 22 kW). When an EV plugs in, it 
communicates with the Electric Vehicle Supply 
Equipment (EVSE), EV charger, according to the IEC 
61851 protocol. This protocol only supports 
unidirectional energy exchange, thus, EVs can only 
charge their battery. The EV charger communicates 
its maximum power output to the EV and the EV 
communicates its maximum charging rate to the EV 
charger. Then the actual charging rate is determined 
by the lowest maximum charging rate.  Data of the 
charging event is transferred from the EV charger to 
the charge point operator (CPO) where the data is 
collected. In addition, the CPO can set charging 
profiles for individual EVs via the Open Charge Point 
Protocol (OCPP).  

3.2 Data acquisition 

The used datasets are obtained from the EV 
chargers of the investigated office building and 
contain approximately six months of data 
(November 2020 – May 2021) from five EVs in total. 
The datasets only consist of unidirectional charging 
events, since discharging with bidirectional 
charging events is currently not supported by most 
EVs. The datasets are log data and contain a lot of 
parameters, but only data about datetime, charging 
rate (kW) cumulative energy consumption of the 
charging session (kWh) and ID number are relevant. 
The ID numbers are necessary to differentiate data 
from individual EVs in the pre-processing phase, 
whereas the charging rate is used to constitute load 
profiles and energy consumption is used to obtain 
some general insights, such as average charging 
time. 

3.3 Data pre-processing 

The first step is to clean the data by filtering 
valuable information. The second step involved the 
resampling of the data. The datasets are down 
sampled to 15 minutes time intervals to replace the 
irregular time intervals from the log data, since 
regular time intervals are necessary for the 
constitution of representative EV charging load 
profiles. Finally, the datasets are reindexed to create 
similar time series. 

3.4 Constitution of load profiles 

K-means data clustering is used to extract clusters 
which represent common daily load profiles. The
number of clusters are validated with two different 
methods. The first method is the silhouette score.
The silhouette value is a measure of how well an 
object fits in its own cluster in comparison to other
clusters. The silhouette score can vary between +1
and -1. A value close to +1 indicates a good match, a
value close to 0 indicates overlap between the
clusters and a value of -1 indicates a mismatch of 
clusters. The second method is the elbow method. 
This method calculates the Within-Cluster Sum of
Square (WCSS) for different amounts of ‘k’ clusters. 
WCSS is the sum of squared distance between each
point and the centroid in a cluster. With an
increasing amount of ‘k’ clusters, the WCSS
decreases. The optimal number of clusters can be
determined by plotting the WCSS of all clusters. The
optimal number of clusters according to the elbow
method can be recognized when the graph bends 
and the decrease of WCSS stagnates.

3.5 Smart charging scenario 

Based on knowledge about the electrical building 
load, a smart charging scenario is proposed to 
determine the smart charging potential of the case 
study. The scenario aims to flatten the EV charging 
load, since the electrical building load is already 
flattened due to operations of the photovoltaic (PV) 
system in combination with the battery energy  
storage system (BESS). Multiple assumptions are 
made to simplify the scenario:  
• A default charging threshold of 7 kW is set for

the individual cars, based on assumptions from
earlier research [4]. 

• The maximum charging power is limited to 14
kW, which corresponds to two EVs charging
simultaneously at the default charging rate.

• Only ‘morning’ clusters of the EVs are evaluated. 
The morning clusters seem most realistic 
because earlier research [6] indicates that most
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Fig. 2 – Smart charging scheduling. 

power peaks occur in the morning. 
• The energy requirements of an EV are

determined with the integral of the investigated 
cluster according to the equation (1):

𝐸𝑒;𝑑 =  ∫ 𝑃(𝑡) 𝑑𝑡

48

0

  (1) 

Ee;d = energy consumption of a specific EV (e) 
at a specific weekday (d) [kWh] 

P(t) = average power demand in 15 minutes 
time interval [kW] 

t = time [1/4 h] 
• The number of charging events throughout a

week is assumed to be worst-case, meaning that
an EV charges at all workdays on which it has
charged previously.

The charging sequence is based on priority by 
continuously monitoring the presence and energy 
requirements of EVs as illustrated in Figure 2. 

4. Results

4.1 Exploratory data analysis 

Initially, the pre-processed dataset is explored to 
obtain an indication of the individual EV charging 
load profiles. A boxplot of the charging power and 
energy consumption provides valuable insights 
about the general charging power, energy 
consumption and charging duration. From the 
charging power distribution in Figure 3, it is 
noticeable that EV 1-3 have overlapping quartiles, 
indicating uncoordinated charging patterns at 
maximum power rate (11 kW). Contrary, wider 
ranges for charging rates are noticeable for EV 4 and 
5, indicating some kind of ‘manual smart charging’. 
Moreover, the average energy consumption varies 
between 25 – 30 kWh approximately according to 
Figure 3. The charging power and energy 
consumption combined, roughly indicates an 
average charging duration between 2.5 – 4 hours. 

4.2 EVs load profiles 

The exploratory analysis shows valuable insights. 
However, important daily and quarter hourly 
information is missing, thus, daily load profiles 
based on quarter hourly data are necessary for 
more detailed information. In general, it is 
noticeable that all EVs have quite similar clusters. 
Most EVs have two clusters, where one cluster 
starts charging in the morning, stops charging after 
several hours and has a relatively long idle time. The 
other cluster, which is not considered in this study, 
starts charging later in the morning or in the 
afternoon and has almost no idle time.  

Fig. 3 – Charging power distribution of individual EVs 
(top) and energy consumption distribution (bottom). 

4.3 Comparison between building load and 
total EV load 

The total EV load contains four clusters of which 
three clusters can be characterized as ‘morning 
cluster’, one cluster as ‘afternoon cluster’ as 
illustrated in Figure 4. The outcome is comparable 
with earlier research [6] and empowers our 
assumption to focus on morning clusters. Moreover, 
it is noticeable that the power peaks of the total EV 
load are occasionally larger than the electrical 
building load of the case study, depending on the 
buildings’ cluster and the EV’s cluster, which 
emphasizes the importance of smart charging. In 
addition, quick ramp ups and downs of the EV load 
are noticeable during office hours (07:30-17:30 h) 
due to arriving, departing employees and fully 
charged batteries, whereas the building load has 
only one quick ramp up before the office hours and 
one quick ramp down before the end of the office 
hours. 

4.4 Smart charging potential 

The smart charging potential at the case study is 
evaluated by comparing EV charging loads 
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Fig. 4 – Comparison between electrical building load 
(top) and total EV charging load (bottom). 

according to uncoordinated and coordinated 
charging sessions, using real-world data. The 
proposed smart charging scenario aims to flatten 
the EV load since the electrical building load is 
already flattened. Overall, it is possible to reduce the 
power peaks in the morning by spreading the EV 
load over the day. Load shifting is arranged by 
limiting the charging power and delaying the 
charging sessions on individual level, where its 
applicability depends on the connection time and 
required energy. The smart charging potential is 
evaluated per weekday during a typical week as 
illustrated in Figure 5. The average individual 
power peak reductions vary from a slight decrease 
of 2.83% up to 37.8%, where the average power 
peak reduction of the total EV load equals 59.6% as 
shown in Table 1.  

4.5 Potential HVAC flexibility 

In addition to the load flexibility of smart charging, 
the load flexibility of HVAC systems is considered. 
Especially at critical days when a lot of EVs charge 
simultaneous with inevitably large power peaks, 
complementary load flexibility from the HVAC 
system could be desirable. Earlier research [9,10] 
investigated the load flexibility potential of the 
ventilation fan, chiller and humidifier at our case 
study. They found a significant potential to reduce 
the power demand by adjusting the active 
operation, without affecting indoor comfort and 
human health, as shown in Table 2. 

Tab. 2 – Characteristics of HVAC load flexibility. 

Criteria Ventilation Chiller Humidifier 

Response 
time [min.] 

0.5 – 5 5 5 

Availability 
duration 
[min.] 

120 20 60 

Power 
reduction 
[kW] 

4 7 14 

Energy 
reduction 
[kWh] 

8 2.3 14 

The load flexibilities of the ventilation fan and 
humidifier are suitable for complementary power 
reductions, since the response time is fast, the 
availability duration is long and the power demand 
is arranged with proportional integration derivative 
(PID) controllers. In contrast, the chiller is less 
suitable for complementary load flexibility since the 
power demand is controlled per stage and the 
availability duration is short.  The HVAC load 
flexibilities are currently not incorporated in our 
smart charging strategy, because further research is 
necessary to investigate the controllability of HVAC 
components within smart charging strategies. 

Tab. 1 – Numerical overview of smart charging results (‘-‘ indicates absence). 

EV load Monday Tuesday Wednesday Thursday Friday Average 

EV 1 – –37.7% –37.8% – – –37.8% 

EV 2 – – –37.7% –23.9% –11.0% –24.3%

EV 3 – –37.7% – – –22.2% –30.0%

EV 4 –24.4% +0.24% –37.1% –1.19% –37.1% –19.9%

EV 5 –2.45% –3.06% –2.89% –2.80% –2.94% –2.83%

Total –57.4% -61.5% –63.4% –63.1% –52.4% –59.6%
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5. Discussion

The results of the smart charging potential are very 
promising. However, the smart charging potential is 
accompanied by certain uncertainties and 
limitations which will be described in this section. 

First, the used datasets have a limited number of 
charging events. Only 122 charging sessions are 
registered since the operation of the EV chargers. A 
larger dataset would increase the reliability of the 
clustered charging profiles. 

Second, in most cases it is unknown how much 
energy an EV needs to charge, since SoC values are 
often not available due to a lack of open protocols. 
Therefore, this study determined the energy 
requirement of an EV at a specific weekday by the 
integral of the obtained cluster. 

Finally, assuming that EVs charge at all weekdays on 
which it has previously charged, probably results in 
a significant overestimation of the charging load, 
since it is unlikely that an EV always charges when 
present. The presence of a single EV is investigated 

and compared with charging sessions from the 
datasets. This particular EV only charges 52% of the 
time. Therefore, it is plausible that this presence-
charging ratio is also applicable to other EVs. 
Unfortunately, it was not possible to investigate the 
presence of other EVs due to privacy issues.  

6. Conclusions and
recommendations

6.1 Conclusions 

Motivated by a lack of research regarding individual 
EV load profiling and smart charging, this research 
aims to evaluate individual EV charging load profiles 
to flatten the total power demand of a commercial 
building. Conclusions of this study are drawn by 
answering the defined research questions from 
section 2. 

What are important parameters to constitute 
appropriate EV charging load profiles? 

Fig. 5 – Visual overview smart charging potential. 
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It can be concluded that charging power per time 
interval is the most important parameters for the 
constitution of EV charging load profiles since other 
parameters can be retraced with the charging 
power. Additionally, initial and final SoC are key 
parameters for optimizing smart charging. 
Unfortunately, SoC values are often not available 
due to a lack of open protocols. 

What are the characteristics of the individual and 
total EV charging loads at a commercial building? 

Generally, it is noticeable that EVs often have two 
clusters, a morning and afternoon cluster, which are 
quite similar for all EVs at the case study. The 
morning cluster starts charging in the morning, 
stops charging after several hours and has a 
relatively long idle time. The afternoon cluster starts 
charging later in the morning or in the afternoon 
and has almost no idle time. Especially, the morning 
cluster enables smart charging by shifting loads to 
the afternoon to reduce power peaks. This holds for 
EVs with just a few charging sessions, but also for 
the EVs with relatively a lot of charging sessions. 
Moreover, the total EV charging load has four 
clusters and can also be distinguished in morning 
and afternoon clusters. three from the four clusters 
are morning clusters, which emphasizes the 
occurrence of power peaks in the morning.  

How large is the smart charging potential of a 
commercial building? 

To quantify the smart charging potential at a 
commercial building, power peaks of uncoordinated 
charging profiles are compared with coordinated 
charging profiles. Power peak reductions of 
individual and total EV load per weekday (Monday-
Friday) are evaluated. Overall, it is possible to 
reduce the power peaks in the morning by 
spreading the EV load over the day. The average 
individual power peak varies from a slight increase 
of 0.24% to a decrease of 37.8% and the average 
power peak reduction of the total EV load equals 
59.6%. Therefore, the smart charging potential of 
this scenario shows very promising results. 

6.2 Recommendations 

This exploratory research on individual EV load 
profiling and smart charging is the basis for more 
sophisticated research on smart charging. 
Therefore, this section provides the following 
suggestions for further research:  
• In this study, data about EV charging and

presence is limited. For further research, it is
recommended to collect more data.

• Only one scenario is investigated in this 
research. However, there are more interesting 
scenarios to investigate. For example, a scenario 
without BESS since most commercial buildings
do not have a BESS. Without BESS, the building
load differs since energy storage is not possible.
In this scenario, the scheduling of the charging 

load would mainly depend on the electricity 
production of the PV system to increase self-
consumption.  

• It would be interesting to implement the
complementary load flexibility of the ventilation
fan and humidifier into smart charging 
scenarios. 

• The next step would be to create forecast models 
to predict the EV charging load a day-ahead. The
forecast models would increase the accuracy and 
possibilities for smart charging strategies. It 
would be interesting to create two types of 
forecasting models: a forecast model to predict
individual EV loads with detailed data and a 
model to predict the aggregated EV load of a
larger population with limited data.

• After constituting a forecast model, optimization 
techniques could be used to find optimal smart
charging scenarios and charging power rates. In
this study, a default power rate of 7 kW was 
assumed, but with the application of
optimization techniques, optimal power rates 
can be determined, which are based on the
forecast of the building load and the presence of
EVs.
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