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Abstract. HVAC engineers are frequently challenged to design and operate ventilation systems 
with a high standard of performance considering comfort, energy efficiency, and indoor air 
quality. However, currently, most design, commissioning and control processes of ventilation 
systems rely on rules of thumb and engineers' experience. A simulation-based framework for 
informed decision-making could be an effective tool to achieve ventilation systems with optimal 
design and performance. To develop such a framework, the integration of solid component 
models that provide insight into the system's aeraulic behavior is vital. In previous research, a 
simulation framework known as Air Distribution Network Design (ADND) optimization 
algorithm was developed. The ADND algorithm provides a basic strategy to design centralized 
air distribution networks. However, the method is missing some features before it can be used 
in practice. Currently, the method is limited to generating layout by accounting for the ductwork 
only. Some ventilation system components (e.g., CAV control box) are not yet integrated. This 
paper presents the development of a new CAV control box model that is typically used in 
nonresidential buildings, viz., a mechanically controlled damper that maintains airflow to a 
predefined fixed airflow level. The model aims to predict the aeraulic performance of the 
control box at any given inlet volumetric flow rate and set airflow rate (i.e., the airflow index at 
which the CAV box is commissioned to maintain the flow) for diameters between 125 and 250 
mm. First, lab setups were built to measure pressure drops for different CAV diameters by 
varying the inlet airflow rates and set airflow rates. Next, the measurement data was used to 
develop a model of the CAV control box by training a regression model. Finally, the model was 
tested and validated on experimental data that was not used in the training set. The accuracy of 
the CAV box model justifies its integration into the ADND algorithm and also its potential to be 
integrated into common building simulation frameworks. Once integrated, it can be exploited in 
many applications, including evaluating the performance of designs, automating the iterative 
balancing process, and optimizing the control strategy of ventilation systems.  
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1. Introduction

1.1 Overview 

Nowadays, HVAC engineers are challenged to design 
and operate ventilation systems with a high standard 
of performance concerning comfort, energy 
efficiency and indoor air quality (IAQ) at minimal 
expenses (i.e., material, installation and maintenance 
costs). However, most of these features contradict; 
for example, achieving the desired IAQ, i.e., CO2 
levels, is usually reached by increasing the supply 
and/or extract airflow rates, which concurrently 
increases the energy usage and sound levels. This 
illustrates that achieving an optimal design and 

system operation can be complex. Consequently, 
design and operation decisions still often rely on 
rules of thumb [1,2]. Therefore, a method supporting 
and guiding engineers in designing, commissioning, 
and controlling ventilation systems would be 
desirable. 

Previous research developed an optimization 
method for Air Distribution Network Design (ADND) 
[1,3]. This method can quickly generate numerous 
different air distribution system configurations (i.e., 
ductwork layout and duct sizes). The method 
provides a basic strategy to generate optimized air 
distribution network designs for nonresidential 
buildings. Although the ADND optimization method 
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results in promising outcomes, some additional 
features are required before it can be used in 
practice. Currently, the method is limited to 
generating layouts by accounting for ductwork only. 
Ventilation system components (i.e., diffusers, 
silencers and volume flow controllers) are not yet 
included in the ADND method [1,2]. Implementing all 
existing ventilation components to the ADND 
algorithm devotes the potential for further design 
optimization. 

To integrate the missing components in the ADND 
algorithm, it is essential to have aeraulic models for 
every component that may exist in the ductwork. 
These component models should predict the 
pressure drop as a function of airflow rate by 
allowing input for all the parameters that may affect 
the aeraulic performance of the component (e.g., 
inlet and outlet dimensions in case of a transition or 
bend angle in case of a bend). Most of these 
component models exist in literature, design 
standards, building simulation frameworks or are 
provided by the manufacturer [4,5]. However, some 
component models solely exist at a high abstraction 
level, while others do not exist at all. Therefore, they 
cannot be integrated into the ADND optimization 
algorithm as they cause performance inaccuracies. 
One of these components is the Constant Air Volume 
(CAV) box. 

Several CAV box types are used in practice. Some of 
them are inserted inside the ducts Fig 1-B. These 
types of CAV boxes are often used in residential 
buildings as they are only suitable for low velocities 
and small sizes. However, the ADND algorithm is still 
limited to designing air distribution systems in 
nonresidential buildings. The CAV box that is 
typically used in nonresidential buildings is the one 
having a blade and control mechanism presented in 
Figs 1-A and 1-E. It is inserted at both sides into a 
round duct for easier installation and maintenance. 
This CAV box can have several control settings 
depending on the manufacturer (Figs 1-C and 1-D), 
but always the same controller structure and 
function (i.e., blade type and spring connection). This 
paper focuses on developing a CAV box that is often 
used in nonresidential buildings. 

1.2 CAV Mechanism 

A CAV control box ideally maintains the passing 
volumetric flow rate at a predefined fixed level, 
independently of the pressure variation upstream or 
downstream in the air distribution network. In 
practice, this can be achieved to a certain extent by 
respecting the minimum and maximum pressure 
difference over the CAV box. The CAV box is a 
mechanically self-powered unit that controls airflow 
by setting an external controller assembly mounted 
on the CAV (Fig 1-C-D). The control assembly 
provides an index for the range of airflow rates (i.e., 
Qsets) that the CAV box can maintain to achieve the 
demand flow. The desired flow rate is usually set 
while commissioning the air distribution system.  

In a random hydraulic component, the flow rate is 
directly proportional to the square root of the 
pressure drop. Thus, the flow rate increases with the 
pressure drop and vice versa. To achieve a fixed flow 
rate for a range of pressure variations over the inlet 
and outlet of the CAV box, the blade inside the CAV 
box should close when the inlet pressure is high and 
vice versa. This is achieved by the blade shape 
presented in Fig 1-F. Due to the bend shape of the 
blade, the blade is dragged to a more closed position 
at higher inlet pressure, reducing the opening area 
and flow rate. A spring provides a counterforce to 
regulate the opening position according to certain 
inlet pressure. At lower pressures, the spring pushes 
the blade back to a more open position. 

(A) 
(B) 

(C) 
(D) 

(E) 
(F) 

Fig. 1 - : (A): Nonresidential CAV box (B): Residential 
CAV box (C-D): Two different CAV Controller 
Assemblies (E): CAV blade with a spring attached; (F): 
Aerodynamic force sketch [6]. 

Considering physical limitations, in general, the CAV 
has three working areas. At low inlet pressure, the 
CAV is almost fully open, and the flow rate is directly 
linked to the available pressure drop. At very high 
inlet pressure (typically beyond the operational 
limit), uncertain behavior of the airflow vs. the 
pressure drop occur due to the developed vortices 
(more explanation in section 3.2). In between these 
limits, the maintaining phase occurs where the 
airflow rate is ideally fixed. 

1.3 State of the Art 

Some ventilation components' manufacturers 
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provide the CAV box's aeraulic curve models (i.e., 
airflow rate vs pressure drop curve) [7]. However, 
those curves describe the CAV box's performance 
only when the box is operating at the maintaining 
phase. Nevertheless, the transition phase (the phase 
at low-pressure drops before the maintaining phase) 
is not included in the curves. Furthermore, the curves 
are averaged for several diameters for every Qset. 
This leads to imprecisions when determining which 
pressure drop is required to maintain a particular 
airflow rate (Fig 2). The imprecisions of averaging 
the curves were proven by experimental 
measurement (graphically presented in sections 2 
and 3); while changing the diameter of the CAV box 
and commissioning it at the same Qset, the pressure 
required to maintain the airflow rate is different for 
every diameter. For example, considering a 
Qset=250 m3/h, the airflow is maintained for a CAV 
box diameter of 160mm when the pressure drop is 
50 Pa. On the other hand, for a diameter of 200mm, 
the airflow is not maintained until reaching a 
pressure drop of 75 Pa. Consequently, this will affect 
the aeraulic performance assessment of the ADND 
algorithm and, therefore, the design decisions. 

Fig. 2 - Airflow rate vs pressure drops for diameters 
125, 150, 160, 200 and airflows between 180 and 300 
m3/h [7]. 

CAV boxes are often used in CAV ventilation systems, 
where the system supplies a constant airflow rate at 
variable temperatures [8]. Therefore, a CAV damper 
that maintains the airflow at a specified airflow rate 
is implemented in common building simulation 
frameworks (i.e., EnergyPlus [9]). However, the 
damper models do not allow to exceed their 
maximum set airflow rate (i.e., Qset) [9]. Ideally, this 
is how CAV boxes are meant to perform. Therefore, 
the common simulation frameworks assume ideal 
CAV box performance. However, manufacturers 
declare that there might be an airflow rate deviation 
of ±10% in the stable control range (i.e., 
maintenance range) [10,11].  

Furthermore, CAV boxes can also operate with 
partial load behavior in practice. For example,  
during the daytime, the building is fully occupied; 
thus, the system operates at full load; nevertheless, 
at night, the building is almost unoccupied; thus, the 
system operates at partial load. Such a system is still 
a CAV system with two operating modes (i.e., day and 
night modes). Moreover, CAV boxes are also used in 
variable air volume (VAV) systems, where partial 

airflow behavior or demand-controlled ventilation 
occurs (i.e., Building Z – UAntwerpen, Belgium). In 
the same VAV air distribution system, there might be 
rooms with a VAV box as a volume flow controller 
and other rooms with a CAV box volume flow 
controller. For example, considering a VAV system, 
VAV boxes (i.e., automatically adjusted dampers) are 
installed to control the airflow in rooms with 
unstable occupancy behavior (e.g., meeting rooms) 
by controlling the damper position and the AHU fan. 
On the other hand, the CAV boxes are installed in the 
system for rooms with a stable demand profile (i.e., 
storage rooms), as they are much cheaper than the 
VAV boxes. Nonetheless, the CAV box model 
developed in the common simulation framework 
cannot operate in partial load behavior or a VAV 
system. For instance, in EnergyPlus, the CAV box, 
which is categorized under the terminal components 
(i.e., 
Air:Terminal:SingleDuct:ConstantVolume:NoReheat
), is not allowed to be implemented in a system with 
a variable airflow fan [9]. However, an alternative for 
a CAV box in a VAV system used by design developers 
is a VAV box with a constant flow control signal to 
maintain the airflow rate. Although the alternative is 
meant to control airflow rate, it does not have the 
same aeraulic performance because CAV and VAV 
boxes have different mechanisms. Therefore, 
integrating the CAV box model of the common 
simulation frameworks or its alternative during 
partial load behavior in the ADND algorithm leads to 
an inaccurate aeraulic performance and defect in the 
design optimization potentials. The desired CAV 
model to be integrated into the ADND algorithm 
should estimate the aeraulic performance (i.e., 
pressure drop vs. airflow rate) for all available sizes 
and Qsets within the operational limit, i.e., low-
pressure phase and intermediate pressure phase or 
maintaining phase.  

1.4 Aims and Objectives 

Since no CAV box model is compatible with the ADND 
algorithm, a CAV box model that can mimic the 
aeraulic performance of a real CAV box is needed 
mainly to be integrated into the ADND algorithm for 
further optimization. This model will also be useful 
for integration into common simulation frameworks 
to make better aeraulic performance predictions 
than with existing models. 

In this paper, a model for the CAV box that is typically 
used in nonresidential buildings is developed to 
determine its aeraulic performance for any given 
Qset of the CAV box diameters between 125 and 
250mm. Lab setups for three CAV boxes with three 
different diameters (i.e., 125, 160, and 200 mm) were 
constructed at the HVAC Lab – University of Antwerp. 
First, pressure drop and airflow rate measurements 
were collected, as discussed in section 2.1. Next, 
airflow rate vs. total pressure drop curves for the 
three CAV boxes at every airflow rate index (i.e., 
Qset) were fitted to the collected measurements, as 
discussed in section 2.2. Curves fitting was only 
applied to the collected measurements for the three 
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tested diameters (results are presented in section 
3.1). However, it allowed the generation of enough 
data to train an artificial neural network (ANN) 
regression model that can predict the aeraulic 
performance (i.e., total pressure drop vs. airflow rate 
and vice versa) of any existing CAV box with a 
particular diameter and Qset range. An ANN 
regression model was used due to uncertainty on the 
CAV box aeraulic performance. Simply interpolating 
and extrapolating between the fitted curves proved 
to be less accurate than the ANN predictions, 
especially when extrapolating to a CAV box with a 
different diameter. Further explanation of why ANN 
was the chosen approach to develop the CAV model 
is presented in section 3.2. The results, validation, 
and discussion on the application potential are 
included in section 3.3. 

2. Methodology

2.1 Experimental Measurements 

The American Society of Heating, Refrigerating and 
Air-Conditioning (ASHRAE) standard [12] is used to 
measure the pressure drop of the CAV box and the 
volumetric flow rate in the branch with the CAV box. 
The performed setups for the three CAV box 
diameters follow the description of duct mounted 
fitting test setup [12,13] where,  

• The distance before the fitting is at least

4.6m to achieve a fully developed flow. For

the CAV setups, the distance before the CAV 

box was at least 6 m.

• The total pressure drop is measured at a

distance of (1.5 ± 0.5)𝐷 upstream (i.e.,

before the CAV box) and 11𝐷 downstream

(i.e., after the CAV box), where 𝐷 =

𝑑𝑖𝑎𝑚𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑑𝑢𝑐𝑡 =

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑒𝑡 𝑑𝑢𝑐𝑡. The pressure

difference upstream and downstream is the

sum of the total pressure drops from the

CAV box and the duct parts between the

upstream and downstream measuring 

points.

• The air velocity measurement plane is at

least 7.5 diameters downstream. Fig 3 

represents the measurements locations per 

diameter. A volume flow hood was placed at 

the terminal of each test setup to ensure the

velocity measurements. Therefore, the

velocity and the airflow rate measurements

are expected to match.

The measuring instruments and their accuracy are 
presented in Tab. 1. 

Tab. 1- List of Instruments 

Type-of 
measurements 

Instrument Error Serial 
Number 

Multi-function 
measuring 

instrument, 
which was used 

for pressure 
and velocity 

measurements 

± (0.3Pa + 
1%) 

0563 4800 

Pressure Follows the 
multi-

function 
measuring 
instrument 

0635 2045 

Velocity ± (0.2m/s 
+ 1%)

0635 9542 

Volume flow 
rate 

± 3% 0563 4200 

2.2 Data Augmentation 

Experimental setups were created on three CAV 
boxes with 125, 160, and 200mm diameters to 
develop an empirical CAV model that can predict its 
aeraulic performance at any given diameter and Qset. 
For each diameter, 7 to 8 Qsets were tested. For each 
Qset, at least eight airflow rates and total pressure 
drop measurements must be taken, according to 
ANSI/ASHRAE standard 120-2017 [12].  

After measuring the data, one way to develop the 
CAV model would be by interpolating and 
extrapolating the available measured data to 
determine the aeraulic performance at any given 
diameter and Qset. Several input parameters may 
affect the aeraulic performance of the CAV box (i.e., 
airflow rate, pressure, diameter, Qset). Interpolation 
and extrapolation can be performed to estimate the 
aeraulic performance by following the existing trend 
of measured data. Interpolation and extrapolation 
can only be valid to know the aeraulic performance 
between two measured points having the same 
diameter and Qset. However, interpolating and/or 
extrapolation between points having different 
diameters and/or Qsets results in an inaccurate 
output due to the CAV box uncertainty in the aeraulic 
performance. For example, the CAV box of 200mm 
with Qset= 300 m3/h had eight measured points 
(airflow vs. pressure drop); interpolating between 
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the eight measured points to determine the airflow 
vs. the pressure drop can give an accurate result. 
However, extrapolating to an unmeasured diameter 
(i.e., 250mm) to determine aeraulic performance 
results in inaccurate outputs due to the CAV box 
uncertainty. Section 3.2 presents the CAV box's 
aeraulic performance uncertainties and justifies why 
interpolating and extrapolating between the 
measured data is inaccurate. To overcome the 
uncertainties, curves are first fitted to the measured 
data to generate enough data to train a regression 
model. The fitted curves are shown in Figs 4, 5, and 
6. An accurate correlation that can describe the
equation of the measured data is equation 1.

𝑄 = 𝐴 + (𝐵 × 𝑃𝐷) − 𝐶𝑒−𝐷×𝑃𝐷 Equation 1 

Where Q is the airflow rate [m3/h], PD is the pressure 
drop [Pa], A, B, C, and D are coefficients that are 
estimated for each curve using the curve_fit function 
from the SciPy library on Python [14]. The R squared 
value for every fit is estimated to indicate how well 
the curve fits the measured data. The closer the R 
squared value to 1, the more accurately the curve is 
fitted to the data. Although the R squared function 
can also be imported from the scikit-learn library 
[15] in Python, its correlation is presented in
equation 2.

𝑅2 =
∆𝑚𝑒𝑎𝑛 − ∆𝑓𝑖𝑡𝑡𝑒𝑑 𝑐𝑢𝑟𝑣𝑒

∆𝑚𝑒𝑎𝑛

Equation 2 

Where ∆𝑚𝑒𝑎𝑛 is the variation around the mean, 
which is the sum of the square differences between 
the actual measured values and the mean.  
∆𝑓𝑖𝑡𝑡𝑒𝑑 𝑐𝑢𝑟𝑣𝑒 is the sum of the square differences 
between the actual measured value and the 
predicted ones from the fitted curve.  

After fitting the curves to the measured data, enough 
data can be generated by implementing parameters 
into equation 1. The generated data is used to train 
an ANN model to predict the aeraulic performance of 
the CAV box, given its diameter and Qset. The model 
prediction is expected to be accurate even when 
inputting different diameters (e.g., 250mm) and 
Qsets than those used for training. The diameters and 
Qsets that were used for training are presented in 
Table 2.  

2.3 The ANN Model 

ANN has been an attractive tool for solving nonlinear 
problems [16], making it suitable to describe the 
nonlinear performance of the CAV box. ANN learns 
from the data provided, i.e., training dataset. The 
training dataset for the CAV box model is the 
measured data (section 2.1) and the expanded data 
(section 2.2). The input parameters for training the 
ANN regression model are the diameter of the CAV 
box, Qset, and the total pressure drop. The output of 
the model is the airflow rate. Besides, ANN can deal 
with uncertainties, which are discussed in section3.2. 

3. Results

This section presents the outcomes of the curve 
fitting of the measured data in section 3.1. Then, the 
fitted curves are used to generate more data (as 
discussed in section 2.2) to train an ANN regression 
model, i.e., the CAV box model that predicts the 
aeraulic performance given at any given diameter 
and the Qset of the intended CAV box. Before 
reporting the model results, some measurement 
observations and the reason for using the ANN 
regression model is used are presented in section 3.2. 
Finally, the trained CAV model results and the model 
validation are presented in section 3.3. 

Fig. 3 - Experimental setup – UAntwerpen HVAC Lab 

3.1 Curve Fitting 

The minimum and maximum R squared of the fitted 
curves are presented in table 2. 
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Tab. 2 - R squared outputs for the fitted curves 

CAV Diameter 

(mm) 

Qset [m3/h] R squared 

125 125, 150, 175, 

200, 225, 250, 

280 

Min = 0.9926 

Max = 0.9989 

160 180, 200, 250, 

300, 350, 450, 

500 

Min = 0.9935 

Max = 0.9996 

200 250, 300, 350, 

400, 500, 600, 

700, 800 

Min = 0.9889 

Max = 0.9996 

Fig. 4 - Airflow rate vs total pressure drop for 125 mm 
CAV box

Fig. 5 - Airflow rate vs total pressure drop for 160mm 
CAV box 

Fig. 6 - Airflow rate vs total pressure drop for 200mm 
CAV Box 

From the fitted curves, 2100 data sets (i.e., Pressure 
Drop, CAV diameter, Qset, actual airflow rate) were 
generated to train an artificial neural network (ANN) 
regression model that predicts the airflow rate given 
the pressure drop at any given CAV diameter and its 
Qset. 

3.2 Curves Behaviour 

From Figs 4, 5, and 6, it can be observed that to reach 
the constant airflow rate; the fan must supply enough 
pressure to overcome the first part of the curve, i.e., 
where the pressure drop from the CAV box is usually 
between 0 and approximately 75 Pa. The second part 
of the curve is where the CAV is desired to function, 
i.e., where the airflow rate barely changes with the 
increase of the fan pressure. In this latter part, the
CAV blade closes to drop enough pressure, thus 
maintaining the airflow rate. The last part of the
curves is presented in Fig 7. Although this region is 
reached at a high-pressure inlet of the CAV box (>600
Pa), in practice, this part is unlikely to be reached as 
it requires too much power from the fan and
produces too much noise along the ductwork.
Besides, the pressure in this part of the curve is often
higher than the operating range of the CAV box. The
high inlet pressure results in unstable behavior of the
curve, where the airflow rate starts to fluctuate
around the stable airflow rate. The fluctuation is due
to the vortices developed after the CAV box. These
vortices can result in forces opposite or the same
counterforce direction discussed in section 1.2.
Therefore, these vortices can help open or close the
CAV blade, leading to an increase or decrease in the
airflow rate. However, while fitting the curves, the
average airflow of these fluctuations is considered.
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Fig. 7 - Airflow rate vs. total pressure drop for 200mm CAV 
box (Qset =600 m3/h) 

Although Qset is the index where the airflow rate is 
supposed to be maintained, it can be observed from 
Figs 4, 5, and 6 that in most of the curves, the airflow 
rates are maintained at a slightly different airflow. 
For example, in Fig 6, when Qset =600 m3/h, the 
airflow rate is not maintained until around 650m3/h. 
The manufacturers declare that this difference in 
airflow rate can arise in the maintaining range, and it 
is often quantified as 10% airflow control accuracy 
[10,11]. This means that in order to maintain the 
airflow rate at 600 m3/h, the airflow index should be 
commissioned somewhere between Qset=500 m3/h 
and Qset=600 m3/h.   

For a CAV box model, which can predict the aeraulic 
performance at any given CAV box diameter and its 
Qset, interpolation and extrapolation are inaccurate 
techniques in predicting the aeraulic performance. 
This is due to the uncertainties of the CAV aeraulic 
performance. To be more specific, typically, Qset is 
the index where the airflow is maintained. By 
observing Fig 4, where the diameter of the CAV box 
is 125mm, the airflows are maintained at a value 
slightly higher than their Qsets. On the other hand, 
for a CAV box diameter of 160mm, the airflows are 
maintained at a slightly lower value than their Qsets 
(Fig 5). By extrapolating between these 125mm and 
160mm to predict the aeraulic performance of a 
200mm CAV box, the airflow rates are expected to be 
maintained at a lower value than their Qsets. 
However, the measured data proved that this is not 
the case. From Fig 5, it can be observed that the 
measured airflow rates are most of the times 
maintained at a value slightly higher than the Qset 
(i.e., Qsets = 350, 400, 500, 600, 700, and 800 m3/h) 
but maintained once at an airflow rate lower than the 
Qset (i.e., Qset = 300 m3/h). Since ANN learns from 
the training dataset without requiring prior 
knowledge of the relationships between process 
parameters [16], it is expected to deal with the 
uncertainties properly. Furthermore, the collected 
measurements proved that the Qset is just an index 
to demonstrate a roughly maintained airflow rate. 
However, by commissioning the same Qset on 
different diameters, the airflows are not maintained 

at the same airflow. For example, considering Qset = 
350 m3/h for CAV box diameter of 160 and 200mm 
(Figs 5 and 6),  the airflows are maintained at 330 
m3/h and 375 m3/h, respectively. Although the 
difference seems to remain small (±10% from the 
Qset), it accumulates with several CAV boxes in an air 
distribution system. This leads to a less energy-
efficient system because the CAV boxes are not well 
commissioned. As the developed model should 
predict the airflow rate vs. the total pressure drop at 
any given Qset and diameter of the CAV box, it is vital 
to determine the best position to set the index (i.e., 
Qset), i.e., where the desired airflow is maintained. 
This will be automated while integrating the CAV 
model into the ADND algorithm. 

3.3 The Model 

The developed empirical model of the CAV box is a 
BlackBox model that predicts the aeraulic 
performance (i.e., airflow vs. pressure drop) for any 
given diameter and Qset of the CAV considering the 
chosen CAV type that is typically used in 
nonresidential buildings. The model trains the data 
collected from the fitted curves in sections 2.1 and 
2.2 on the ANN regression model. The model has four 
hidden layers with a total of 40 units. 

Fig. 8 - Predicted and measured airflow rate as a function 
of pressure drop for 250mm CAV box 

Two validation methods were undertaken to validate 
the developed CAV box model. First, while training 
the model, 20% of the collected dataset was 
randomly taken to test the outputs of the trained 
ANN model. The test dataset included data for CAV 
diameters of 125, 160, and 200mm at different Qsets. 
The R squared value of the test set is approximately 
0.98.  

The other validation method was performed on  CAV 
boxes with diameters that were not included in the 
training process. Therefore, these CAV boxes' 
experimental setup was also built by committing to 
the measurements standard in section 2.2 to collect 
pressure drop and airflow rate for some of their 
Qsets. Fig. 8 represents the measurements and the 
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predicted outputs from the trained model for the 
CAV box of 250mm diameter and Qset of 500, 600, 
700, and 1000 m3/h. It can be observed that the 
trained model predicts accurate outcomes in the 
maintaining phase (i.e., accuracy of at least 93%). 
However, less accuracy occurs in the transition phase 
(the phase at low-pressure drops before the 
maintaining phase). This is because the data from the 
transition phase accounts for less than 10% (0 up to 
100 Pa) of the entire range of each curve (0 up to 
1000 Pa); the rest of the data (more than 90% of the 
data) are in the maintaining phase. Still, the 
prediction accuracy in the transition phase did not 
fall below 75%. 

4. Conclusion

To conclude, an empirical CAV box model for typical 
CAV boxes used in nonresidential buildings was 
developed using experimental lab measurements. 
The measured data were fitted into curves. These 
curves allowed the expansion of the measured data 
to acquire enough data to train the ANN regression 
model. The ANN regression model is the CAV 
empirical model that can mimic the aeraulic 
performance of the CAV box at any given Qset for 
diameters between 125 and 250mm. To achieve the 
model that can mimic the aeraulic performance at 
any given CAV box diameter, data from experimental 
measurements for diameters smaller than 125 mm 
and higher than 250 mm can be included in the ANN 
training dataset.  

The predicted outcomes from the developed model 
matched the experimental dataset of the CAV control 
box with an accuracy of at least 75% during the 
transition phase and 93% during the maintaining 
phase. Therefore, the model's outcomes endorse 
integrating it into the ADND algorithm to optimize air 
distribution systems further (i.e., design, 
commissioning, and control optimization). 
Moreover, it can be integrated into the common 
simulation frameworks, where less accurate CAV box 
models are used. 
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