
Automated performance monitoring of HVAC
components by artificial intelligence

Maximilian Both a, Nicolai Maisch a, Björn Kämper a, Alina Cartus a, Jochen Müller a, Christian Diedrich b

a Institute of Building Services Engineering, TH Köln, University of Applied Sciences, Cologne, Germany,

{maximilian_alexander.both; nicolai.maisch; bjoern_klaus.kaemper; acartus; jochen.mueller}@th-koeln.de.

b Institute of Automation Technology, Otto von Guericke University Magdeburg, Magdeburg, Germany,
christian.diedrich@ovgu.de.

Abstract. Energy management systems are an important tool for increasing the energy efficiency

of buildings. However, the widespread availability of such systems is offset by the high complexity

and high costs of implementation, as well as a lack of data. By using standardized digital twins of

technical components, these obstacles can be addressed. In combination with homogeneous

semantics of the digital twins and standardized interfaces as uniform access points to the

information, the implementation of an energy management system can be simplified. If all

technical components of a building have the same information technology structure in the form

of digital twins and make their standardized information uniformly available for query, simple

query rules can be implemented. These enable the automated integration of the information into

an energy management system. However, given the large number of different manufacturers of

the technical components, agreement on a common semantic standard in particular seems

unlikely. Studies show that methods from the field of Natural Language Processing can be used

to process heterogeneous semantics. Agreement on a common vocabulary is no longer necessary.

Instead, different semantics can be used and matched to a target vocabulary. In order to use

semantic matching in Industrie 4.0 environments, it must be provided as an Industrie 4.0 service.

The service provides a translation mechanism from a foreign vocabulary to one's own. For this

purpose, a standardized Industrie 4.0 interface consisting of two operations is specified. This

interface is implemented prototypically as an API to show how it can be used. The specified

interface can be used within the digital twins to process heterogeneous semantics and map them

to its own. Extending the Industrie 4.0 approach from homogeneous to heterogeneous semantics

can help simplifying the implementation of energy management systems. Simpler

implementation lowers the barriers to the use of such systems, which in turn can lead to their

higher availability.

Keywords. Industrie 4.0 Interfaces, Natural Language Processing, Energy management
systems, Digital twins
DOI: https://doi.org/10.34641/clima.2022.144

1. Introduction

Increasing energy efficiency in every sector of
industry is an important aspect of meeting the
agreed climate targets of Germany and other
countries [1]. In order to identify and leverage
energy efficiency potentials, energy management
measures, in particular energy management systems
(EMS), energy audits, Eco-Management and Audit
Schemes (EMAS) and environmental management
systems can be used. Although these systems are
generally considered useful to increase the energy
efficiency of buildings, they are not yet widely used.
Studies show that the percentage of companies with
EMSs is between 18 and 23% [2]. Barriers to the use
of such systems include the high complexity of these,
high costs, and a lack of data to identify potential

savings [2]. In order to increase the spread of EMS,
these obstacles must be overcome: the complexity of
the systems must be reduced, the costs lowered and
the data basis expanded. Concepts from the areas of
Industry 4.0 (I4.0) and Internet of Things (IoT) are
ideal for this purpose. The basis of these two
concepts is the digital representation of assets. If the
digital representation, in the form of a digital twin
(DT), is based on a uniform standard (e.g. [3 ⁠, 4]), the
information can be accessed automatically. For this
purpose, the DT can also provide standardized
interfaces via which its information can be accessed
by other DTs. [5]. In addition, a standardized
semantics of the DTs' information content is
necessary in order to be able to process the
information in an automated way [4]. The
standardized characteristics can be stored in digital

Copyright ©2022 by the authors. This conference paper is published under a CC-BY-4.0 license. 1 of 8

repositories, e.g. [6 ⁠–8], making them retrievable and
available at any time.

An example of an interaction between an EMS and
the DT of a pump is shown in Figure 1. Here, the
energy management application also has a DT.
Specifically, both DTs follow the concept of the asset
administration shell (AAS) [4] and are thus based on
the same standard. Both AAS have the standardized
interface "GetAllSubmodelElementsBySemanticId".
Via this interface the EMS application can query the
AAS of the pump whether it has the property with the
standardized semanticID. This is from the ECLASS
standard [6] and is the ID of the “Pump Power
Output” property. Since the semantics of the pump’s
AAS is also based on the ECLASS standard, it can
return the requested property and can be integrated
into the EMS.

If the three prerequisites (standardized DT,
interfaces, semantics) are present, an EMS can be
easily set up. Within the EMS, automated rules can be
implemented that check new components of a
building for their standardized information. One
such rule is the query for the “Pump Power Output”
and the “Manufacturer Name” of a pump. If these two
pieces of information are available in standardized
form for all pumps in a building and can be queried
via the same interface, they can be automatically
integrated into the building's EMS. A manual
examination of the information household of
components is no longer necessary. This in turn leads
to a reduction in complexity (automated creation of
the EMS), reduces costs (less manual engineering)
and results in a better data basis (standardized
information of the DTs).

However, if one of the three conditions is not met, the
automated creation of an EMS becomes more
difficult (Figure 2).

The EMS and the heat pump both have an AAS and
the standardized interface
"GetAllSubmodelElementsBySemanticId". However,
while the AAS of the EMS is based on the ECLASS
standard, the AAS of the heat pump uses a
manufacturer-specific vocabulary: the two AASs are
based on heterogeneous semantics. Therefore, the
ECLASS semanticID is not recognized and the value
of the requested property cannot be returned. Thus,
an automated query and integration of energy-
relevant values into an EMS is not possible. Instead,
the semantics of the properties would have to be
analyzed and manually linked to an EMS. This in turn
leads to increased complexity and rising costs.

One way to solve the problem of heterogeneous
semantics is to use Semantic Matching (SM) [9 ⁠, 10].
Here, methods from the field of artificial intelligence,
specifically natural language processing (NLP), are
used to map heterogeneous semantics to each other.

This paper designs interfaces that AAS can use to
implement an SM service. The interfaces are first
specified in a technology-neutral way and then as an
API. Additionally, the specified interfaces are
implemented prototypically to show how they can be
integrated into an AAS. By means of the interfaces it
is also possible to process heterogeneous semantics.
This further simplifies the implementation of EMS.

Fig. 1 - Interaction between two Digital Twins

Fig. 2 - Failed Interaction of two Digital Twins

2 of 8

2. Background

I4.0 interfaces and NLP methods are used to
implement an SM service.

2.1 The Asset Administration Shell

The transformation from rigid value chains to
flexible, highly dynamic and globally networked
value networks characterizes the current efforts of
organizations towards I4.0. Various fields of action
are being addressed for this purpose, one of the
central ones being the topic of interoperability [11].
In the field of I4.0, the concept of the AAS has
established itself as the basis for interoperability.
The AAS is the digital representative of an asset in the
digital world [12]. Here, an asset can be any entity
that has value for an organization [13]. The
information model of the AAS defines the structure
of how information of different assets must be
arranged[4]. The composition of AAS and asset is
called I4.0-component. The central building blocks of
the AAS are submodels, which represent the
properties and functionalities of the assets and their
contents in the form of submodel elements (SE) [4].
Submodels represent, for example, identification,
design, or configuration. In addition to the specified
structure through the information model, a unique
semantics is required for the interaction of I4.0-
components [12 ⁠, 14]. This is achieved if the
submodels are available in standardized form and
their semantics are also uniformly standardized. The
semantics of submodels or SEs can be uniquely
described by semantic IDs to locally stored or online
available repositories or ontologies.

Various initiatives standardize submodels for
technical components, e.g. pumps or drives [15 ⁠, 16].
The integration of the submodels in vocabularies
available online [6 ⁠–8] enables the unambiguous
identification of the submodels and their SEs and
thus paves the way for unambiguous semantics. In
the current I4.0-approach, interoperability is
achieved through a uniform structure (information
model AAS), semantics (homogeneous language
space) and the provision of services based on
standardized interfaces.

2.2 Industrie 4.0 Interfaces

The access to the information of an AAS is realized by
interfaces, provided by the AAS. To enable
automated access to the interfaces of different AAS,
these interfaces are standardized. According to [5]
the I4.0-service model describes four levels that are
passed through during the standardization of
interfaces. First, at a technology-neutral level, the
interfaces and associated operations are described in
a general textual form. The second level describes
how these general descriptions can be applied in
different technologies (e.g., HTTP/REST, OPC UA,
MQTT). The third level is called the implementation
level and includes the implementation of the
interfaces using a concrete language such as Python
or Java. The last level describes the runtime level, i.e.,

the concrete implementation of the interfaces in an
I4.0-environment. [5]

In [5] the levels 1 and 2 of different interfaces are
described, e.g. "GetSubmodel". This interface can be
called to retrieve a specific submodel of an AAS. The
general interfaces can be provided in different
services. A service consists of different interfaces
[13]. A basic distinction is made between
"Infrastructure Services" and "Application relevant
Software Services". Infrastructure services refer to
general services that can be reused in concrete
application services. Asset-related services, which
are provided by AAS, represent a subcategory of
application services. [17]

2.3 Semantic Matching for Industrie 4.0
Administration Shells with heterogenous
semantics

Currently, the I4.0 research approach focuses on
homogeneous semantics to achieve semantic
interoperability and interoperability based on it. If
AAS with heterogeneous semantics are used,
interoperability cannot be guaranteed [4]. To extend
this approach to heterogeneous semantics, a method
is developed that can automatically map
heterogeneous semantics to each other. This method
is called semantic matching (SM) [10]. The basis of
SM are methods from the NLP domain. The goal of
NLP is to make computers understand human
language and realize interactions based on it [18].
For this purpose, Language Models (LM) (e.g. [19 ⁠–
24] are used. The training of these takes place in a
two-stage process. In the first step, the models are
trained on large amounts of general text
(pretraining). In the second step (fine tuning) the
models are trained for specific NLP tasks (e.g. text
classification or question answering). Based on these
LMs and the specific NLP task of paraphrase
identification [25] heterogeneous semantics can be
processed.

The developed approach is based on the idea that
two SEs can have different names and definitions,
though having the same semantic content, like the
example in Figure 2. In the applied model
(DistilBERT-SE), name and definition of two SEs are
passed through forming sentence embeddings [26]
first. In the form of vectors, these embeddings
contain the semantic information of the SEs’ names
and definitions. Using cosine similarity, the similarity
of the sentence embeddings is checked and output
whether the two SEs are paraphrases, i.e. whether
they have the same semantic meaning. In initial
studies, this approach was investigated using
heterogeneous pump SEs as an example. The results
with an accuracy of 94% show that this approach
provides first promising results [10].

To improve the results, the DistilBERT [22] model
was additionally trained on domain-specific
literature [27]. Furthermore, additional attributes
(e.g. unit) of SEs in AAS of pumps and HVAC systems

3 of 8

were used to classify the semantics of SEs. A decision
tree was implemented for this purpose. The
combination of the decision tree and the LM
"Eng_DistilBERT-SE" results in the overall model
"MetaEng-DistilBERT-SE" (Figure 3), which is
described in more detail in [9].

Fig. 3 – The MetaEng-DistilBERT-SE model

This model will be used in the further course of the
implementation of the interface.

3. Industrie 4.0 Interface for
Semantic Matching

This paper specifies the "Semantic Matching"
interface. For this purpose, the first three levels of the
I4.0-service model are developed. In addition, it is
shown how this can be used within an EMS to enable
the automated integration of semantically
heterogeneous information into such an EMS.

 3.1 Technology-neutral specification

The SM interface is composed of two interface
operations. The first operation is called
"PostAssetAdministrationShellEmbeddings"
(PAASE) (Appendix A). The input to the operation is
a component's own AAS. The operation is called from
its own AAS and therefore has no output parameter
that is returned to another AAS. With the help of this
operation, the content of an AAS, specifically the
individual SEs of it, passes through the model
"MetaEng-DistilBERT-SE" (Figure 4).

Fig. 4 - Operation PostAssetAdministration-
ShellEmbeddings

First, the metadata is processed in the decision tree
and assigned to one of the pre-trained classes. The
attributes of the SE from Table 1 are first mapped to
the parent classes (Watt to Power, Real Measure to

Real) and then assigned to class 28 by the decision
tree. This class acts as the index of the database to be
created. In parallel, the name and definition of the SE
run through the "Eng-DistilBERT-SE" model and the
sentence embeddings are formed. These embeddings
are then concatenated and written to the matching
index of the database together with the semantic ID
of the SE. This database is initialized and created
when the operation is called.

Tab. 1 -Example for an SE from an AAS

The second interface operation is called
"GetAllSubmodelElementsBySemanticIdAndSemanti
cInformation" (GASEIBSIASI) (Appendix B). The goal
of this operation is to return the matching SE of its
own AAS (Figure 5).

Fig. 5- Operation GASEIBSIASI

The input parameters of this operation are the
attributes of the SE to be matched. First, the semantic
ID is used to check whether the two AASs use a
homogeneous language space. The semantic ID of the
SE to be matched is first compared with all semantic
IDs in the database of the SEs of the own AAS. If a
semantic ID returns a match with the semantic ID to
be matched, this SE is returned as matching.
Matching based on the other attributes does not need
to be performed since the same vocabulary is used. If
no match is found, the attributes are passed to the
"MetaEng-DistilBERT-SE" model (step 2), classified
and the sentence embeddings are formed. According
to the class formed on the basis of the meta

AAS Metamodel AAS Pump

Submodel Element Property

Category VARIABLE

Qualifier Operation

Unit Watt

Data type REAL_MEASURE

Preferred name Pump power output

Definition measured useful
mechanical power
transferred to the fluid
during its passage through
the pump

Semantic ID 0173-1#02-ABC172#001

4 of 8

information, all embeddings of the own AAS
belonging to this class are returned from the
database.

Each of these sentence embeddings is then compared
to the requested SE using cosine similarity. The SE
with the highest similarity is classified as a
paraphrase and returned as an output parameter
along with the corresponding cosine similarity.

3.2 Technology-specific and implementation
level

In the technology-specific level, the generally
specified interface SM and the two operations are
mapped to a specific API. In this paper, HTTP/REST
is used as the technology. The implementation of the
interface and the associated operations is carried out
using Python. The Python framework FastAPI [28] is
used to implement the API. The API provided via
FastAPI for calling the two operations is shown in
Figure 6.

Fig. 6 – Interface Semantic Matching

When an AAS is passed to the PAASE operation, the
model is first run and the results are stored in a
database [29].

When the operation "GASEIBSIASI" is called, it is first
checked with the database whether a common
language space is used. If not, the SM is subsequently
performed and the result is returned to the
requesting AAS. An example of such a call is given in
Figure 7.

Fig. 7 – Calling the operation GASEIBSIASI

An own SE can be defined via the mask. The
necessary attributes for calling the operation must
be filled in here. If, as in the example, no unit is
available, the value can be left empty, this is
intercepted via the function. This request is made to
the API and processed. The response is shown in

Figure 8.

Fig. 8 – Response of the server

The semantics of the requested AAS is based on the
ECLASS standard. The SE defined in the mask,
however, is not based on any standard. Therefore, a
homogeneous language space does not exist. After
the implemented model has been run through, the
appropriate SE is returned as the response.

The example shows that as a request the name of the
manufacturer was asked. Although the requested
AAS is based on a different vocabulary and the name
and definition do not match the requested name and
definition, the matching SE was still returned.
Accordingly, the model processed the request
correctly and interpreted the semantics of the
requested SE correctly.

The example shows the basic flow of the SM. The
following chapter describes how this can be
integrated into an I4.0-environment in further
developments and made available for an automated
EMS.

3.3 Integration of the Semantic Matching
Service into an I4.0-environment

The interface is deployed as a Docker Image. Docker
Images can be downloaded from Docker Hub and
used as a Docker Container as one application on one
system. All installations required for this application
are included on the image. [30]

The SM interface has been implemented as a Docker
image so that it can be easily used in an I4.0
environment (Figure 9).

The AAS of the heat pump provides the endpoint for
API access to the SM interface to other AASs. The
EMS's AAS then sends a request, as in Section 3.2 to
the heat pump's AAS, requesting the SE. This AAS has
implemented the Docker image as a Docker
container within its runtime environment and can
thus access the operations of the container. The
simple implementation of the container makes it
possible to implement this interface within AAS.

If several AAS are implemented by different
components in a building, an EMS can now simply be
set up. If, for example, energy-relevant variables such
as power consumption, power demand, etc. are to be
integrated from each component, the individual AAS
of the components can be queried for these variables.
If positive feedback is received about the existence of
these variables, they can be integrated into the EMS.
Time-consuming examinations of all SEs of each AAS
for the appropriate energy-relevant variables are no
longer necessary. The setup of an EMS in a building

5 of 8

is significantly simplified by the SM service.

4. Conclusions

The results extend the current I4.0-research
approach to the interaction of semantically
homogeneous to semantically heterogeneous AAS.
For this purpose, NLP methods were used to
implement an automated SM on a target vocabulary.
The SM service was specified as an I4.0-interface and
is composed of two operations that are called when
the interface is used. The interface was expressed
and prototyped as an HTTP/REST API. This
demonstrated that the interface can be used to
process heterogeneous semantics. However, for the
interface to be used by AAS, standardization is
necessary. For this purpose, the interface will be
brought into the corresponding I4.0 working groups
to perform a standardization.

EMS are an important factor to increase the energy
efficiency of buildings. In order to simplify the

implementation of these and reduce costs, the use of

DTs of technical components must be pushed further.
In this context, the presented SM service represents
a possibility to process heterogeneous semantics of
components and thus reduces a potential conflict in
the widespread use of EMS. In this paper, the AAS
was used as the digital representation. In order to
cover further specifications of DTs the SM service
must be adapted to their structure.

The datasets generated during the current study are
available in the Labor GART repository,
https://github.com/thcologne-gart

5. Acknowledgement

The authors gratefully acknowledge financial
support from the KSB Foundation in the project
Automatic interaction of semantically heterogeneous
Industrie 4.0 Asset Administration Shells by means
of generic translation mechanisms based on methods
of Natural Language Processing (1.1359.2020.1).

6. Appendices

Appendix A

Operation
Name

PostAssetAdministrationShellEmbeddings

Explanation Takes all submodel elements of the submodels of an Administration Shell, forms embeddings
and writes them to a database

Name Type Description

Input Parameter

aas AssetAdministraionShell AssetAdministration Shell object

Fig. 9 - Interaction EMS with heat pump based on heterogeneous sematics

6 of 8

Appendix B

References
[1] Walter Kahlenborn, Sibylle Kabisch, Johanna

Klein, Ina Richter, Silas Schürmann. Energy

Management Systems in Practice: ISO 50001:

A Guide for Companies and Organisations;

2012.

[2] Clemens Rohde, Patrick Plötz, Lisa Nabitz, et

al. Branchen- und

unternehmensgrößenbezogene Ermittlung von

Klimaschutzpotenzialen (Schwerpunkt KMU)

durch verstärkte Umsetzung von

Energiemanagementmaßnahmen in der

Wirtschaft: Abschlussbericht; 2018.

[3] Web of Things (WoT) Thing Description: W3C

Recommendation 9 April 2020; 2020 [cited

2021 November 30] Available from: URL:

https://www.w3.org/TR/wot-thing-description/.

[4] Federal Ministry for Economic Affairs and

Energy (BMWi). Details Of the Administration

Shell: Part 1 - The exchange of information

between partners in the value chain of Industrie

4.0 2020.

[5] Federal Ministry for Economic Affairs and

Energy (BMWi). Details Of the Administration

Shell: Part 2 - Interoperability at Runtime –

Exchanging Information via Application

Programming Interfaces 2021.

[6] ECLASS e.V. ECLASS: ECLASS - Standard

für Stammdaten und Semantik für die

Digitalisierung [cited 2021 November 30]

Available from: URL:

https://www.eclass.eu/index.html.

[7] IEC. IEC Common Data Dictionary [cited 2021

November 30] Available from: URL:

https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/Tr

eeFrameset?OpenFrameSet.

[8] buildingSMART. buildingSMART Data

Dictionary [cited 2021 November 30] Available

from: URL:

https://www.buildingsmart.org/users/services/b

uildingsmart-data-dictionary/.

[9] Both M, Cartus A, Maisch N, Müller J,

Diedrich C. Interoperability of semantically

heterogeneous digital twins through Natural

Language Processing methods. CLIMA 2022.

[10] Both M, Müller J, Diedrich C. Automatisierte

Abbildung semantisch heterogener I4.0-

Verwaltungsschalen durch Methoden des

Natural Language Processing. at -

Automatisierungstechnik 2021; 69(11): 940–51

[https://doi.org/10.1515/auto-2021-0050]

[11] Federal Ministry for Economic Affairs and

Energy (BMWi). 2030 Vision for Industrie 4.0:

Shaping Digital Ecosystems Globally; October

2019.

[12] VDI. Language for I4.0 components: Structure

of messages. VDI/VDE-Gesellschaft Mess- und

Automatisierungstechnik (GMA); 2020

04.2020.

[13] VDI/VDE-Gesellschaft. Industrie 4.0

Operation
Name

GetAllSubmodelElementsBySemanticIdAndSemanticInformation

Explanation Returns all submodel elements of the Submodel with a specific Semantic-Id or based on Semantic
Matching

Name Type Description

Input Parameter

Semantic ID String Identifier of the semantic definition

Preferred
name

String Preferred Name of the Submodel Element

Definition String Definition of the Submodel Element

Data Type DataTypeIEC61360 Data type of the Submodel Element (i.e. String, Real etc.)

Submodel
Element

String Subtype of the Submodel Element (i.e. Property, Capability, File etc.)

Category String Category of the Submodel Element (Constant, Parameter, Variable)

Qualifier String Qualifier of the Submodel Element

Unit String Unit of the Submodel Element (i.e. Pascal, Kelvin etc.)

Output Parameter

Payload Submodel Element Matched Submodel Element

Cosine
Similarity

Float The calculated cosine similarity as a measure of the accuracy of matching

7 of 8

Begriffe/Terms: VDI Statusreport; April 2019.

[14] Federal Ministry for Economic Affairs and

Energy (BMWi). Position Paper:

Interoperability – Our vision for Industrie 4.0:

Interoperable communication between

machines within networked digital ecosystems;

November 2019.

[15] Both M, Müller J. Digitization of pumps –

Industry 4.0 submodels for liquid and vacuum

pumps. 4th International Rotating Equipment

Conference 2019.

[16] ZVEI - Zentralverband Elektrotechnik und

Elektronikindustrie e. V. Antrieb 4.0 – Vision

wird Realität: Merkmale, Daten und Funktionen

elektrischer Antriebssysteme in Industrie 4.0

für Hersteller, Maschinenbauer und Betreiber;

November 2018.

[17] Functional View of the Asset Administration

Shell in an Industrie 4.0 System Environment:

Discussion Paper; April 2021.

[18] Jurafsky D, Martin JH. Speech and language

processing: An introduction to natural language

processing, computational linguistics, and

speech recognition. 2. ed., Pearson internat. ed.

Upper Saddle River, NJ: Prentice Hall Pearson

Education Internat 2009.

[19] Devlin J, Chang M-W, Lee K, Toutanova K.

BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding;

2018 Oct 11.

[20] Clark K, Luong M-T, Le V Q, Manning CD.

ELECTRA: Pre-training Text Encoders as

Discriminators Rather Than Generators; 2020

Mar 23.

[21] Liu Y, Ott M, Goyal N, et al. RoBERTa: A

Robustly Optimized BERT Pretraining

Approach; 2019 Jul 26.

[22] Sanh V, Debut L, Chaumond J, Wolf T.

DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter; 2019 Oct 2.

[23] Lewis M, Liu Y, Goyal N, et al. BART:

Denoising Sequence-to-Sequence Pre-training

for Natural Language Generation, Translation,

and Comprehension; 2019 Oct 29.

[24] Radford A, Wu J, Child R, Luan D, Amodei D,

Sutskever I. Language Models are

Unsupervised Multitask Learners Alec; 2019.

[25] Socher R, Huang EH, Pennington J, Ng AY,

Manning CD. Dynamic Pooling and Unfolding

Recursive Autoencoders for Paraphrase

Detection. In: Dynamic Pooling and Unfolding

Recursive Autoencoders for Paraphrase

Detection; 2011. Red Hook, NY, USA: Curran

Associates Inc; 801–9.

[26] Reimers N, Gurevych I. Sentence-BERT:

Sentence Embeddings using Siamese BERT-

Networks; 2019 Aug 27.

[27] Lo K, Wang LL, Neumann M, Kinney R, Weld

D. S2ORC: The Semantic Scholar Open

Research Corpus. In: Jurafsky D, Chai J,

Schluter N, Tetreault J, editors. S2ORC: The

Semantic Scholar Open Research Corpus.

Stroudsburg, PA, USA: Association for

Computational Linguistics; 4969–83.

[28] FastAPI: FastAPI framework, high

performance, easy to learn, fast to code, ready

for production [cited 2021 December 3]

Available from: URL:

https://fastapi.tiangolo.com/.

[29] Elasticsearch: Das Kernstück des kostenlosen

und offenen Elastic Stack [cited 2021

December 3] Available from: URL:

https://www.elastic.co/de/elasticsearch/.

[30] Docker Docs [cited 2021 December 3]

Available from: URL: https://docs.docker.com/.

8 of 8

	1. Introduction
	2. Background
	3. Industrie 4.0 Interface for Semantic Matching
	When the operation "GASEIBSIASI" is called, it is first checked with the database whether a common language space is used. If not, the SM is subsequently performed and the result is returned to the requesting AAS. An example of such a call is given in...
	An own SE can be defined via the mask. The necessary attributes for calling the operation must be filled in here. If, as in the example, no unit is available, the value can be left empty, this is intercepted via the function. This request is made to t...
	The semantics of the requested AAS is based on the ECLASS standard. The SE defined in the mask, however, is not based on any standard. Therefore, a homogeneous language space does not exist. After the implemented model has been run through, the approp...
	The example shows that as a request the name of the manufacturer was asked. Although the requested AAS is based on a different vocabulary and the name and definition do not match the requested name and definition, the matching SE was still returned. A...
	The example shows the basic flow of the SM. The following chapter describes how this can be integrated into an I4.0-environment in further developments and made available for an automated EMS.
	The interface is deployed as a Docker Image. Docker Images can be downloaded from Docker Hub and used as a Docker Container as one application on one system. All installations required for this application are included on the image. [30]
	The SM interface has been implemented as a Docker image so that it can be easily used in an I4.0 environment (Figure 9).
	The AAS of the heat pump provides the endpoint for API access to the SM interface to other AASs. The EMS's AAS then sends a request, as in Section 3.2 to the heat pump's AAS, requesting the SE. This AAS has implemented the Docker image as a Docker con...
	If several AAS are implemented by different components in a building, an EMS can now simply be set up. If, for example, energy-relevant variables such as power consumption, power demand, etc. are to be integrated from each component, the individual AA...
	4. Conclusions
	5. Acknowledgement
	6. Appendices
	Appendix A
	Appendix B
	References

