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Abstract. Energy management systems are an important tool for increasing the energy efficiency 

of buildings. However, the widespread availability of such systems is offset by the high complexity 

and high costs of implementation, as well as a lack of data. By using standardized digital twins of 

technical components, these obstacles can be addressed. In combination with homogeneous 

semantics of the digital twins and standardized interfaces as uniform access points to the 

information, the implementation of an energy management system can be simplified. If all 

technical components of a building have the same information technology structure in the form 

of digital twins and make their standardized information uniformly available for query, simple 

query rules can be implemented. These enable the automated integration of the information into 

an energy management system. However, given the large number of different manufacturers of 

the technical components, agreement on a common semantic standard in particular seems 

unlikely. Studies show that methods from the field of Natural Language Processing can be used 

to process heterogeneous semantics. Agreement on a common vocabulary is no longer necessary. 

Instead, different semantics can be used and matched to a target vocabulary. In order to use 

semantic matching in Industrie 4.0 environments, it must be provided as an Industrie 4.0 service. 

The service provides a translation mechanism from a foreign vocabulary to one's own. For this 

purpose, a standardized Industrie 4.0 interface consisting of two operations is specified. This 

interface is implemented prototypically as an API to show how it can be used. The specified 

interface can be used within the digital twins to process heterogeneous semantics and map them 

to its own. Extending the Industrie 4.0 approach from homogeneous to heterogeneous semantics 

can help simplifying the implementation of energy management systems. Simpler 

implementation lowers the barriers to the use of such systems, which in turn can lead to their 

higher availability. 
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1. Introduction

Increasing energy efficiency in every sector of 
industry is an important aspect of meeting the 
agreed climate targets of Germany and other 
countries [1]. In order to identify and leverage 
energy efficiency potentials, energy management 
measures, in particular energy management systems 
(EMS), energy audits, Eco-Management and Audit 
Schemes (EMAS) and environmental management 
systems can be used. Although these systems are 
generally considered useful to increase the energy 
efficiency of buildings, they are not yet widely used. 
Studies show that the percentage of companies with 
EMSs is between 18 and 23% [2]. Barriers to the use 
of such systems include the high complexity of these, 
high costs, and a lack of data to identify potential 

savings [2]. In order to increase the spread of EMS, 
these obstacles must be overcome: the complexity of 
the systems must be reduced, the costs lowered and 
the data basis expanded.  Concepts from the areas of 
Industry 4.0 (I4.0) and Internet of Things (IoT) are 
ideal for this purpose. The basis of these two 
concepts is the digital representation of assets. If the 
digital representation, in the form of a digital twin 
(DT), is based on a uniform standard (e.g. [3 ⁠, 4]), the 
information can be accessed automatically. For this 
purpose, the DT can also provide standardized 
interfaces via which its information can be accessed 
by other DTs. [5]. In addition, a standardized 
semantics of the DTs' information content is 
necessary in order to be able to process the 
information in an automated way [4]. The 
standardized characteristics can be stored in digital 
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repositories, e.g. [6 ⁠–8], making them retrievable and
available at any time. 

An example of an interaction between an EMS and 
the DT of a pump is shown in Figure 1. Here, the 
energy management application also has a DT. 
Specifically, both DTs follow the concept of the asset 
administration shell (AAS) [4] and are thus based on 
the same standard. Both AAS have the standardized 
interface "GetAllSubmodelElementsBySemanticId". 
Via this interface the EMS application can query the 
AAS of the pump whether it has the property with the 
standardized semanticID. This is from the ECLASS 
standard [6] and is the ID of the “Pump Power 
Output” property. Since the semantics of the pump’s 
AAS is also based on the ECLASS standard, it can 
return the requested property and can be integrated 
into the EMS.  

If the three prerequisites (standardized DT, 
interfaces, semantics) are present, an EMS can be 
easily set up. Within the EMS, automated rules can be 
implemented that check new components of a 
building for their standardized information. One 
such rule is the query for the “Pump Power Output” 
and the “Manufacturer Name” of a pump. If these two 
pieces of information are available in standardized 
form for all pumps in a building and can be queried 
via the same interface, they can be automatically 
integrated into the building's EMS. A manual 
examination of the information household of 
components is no longer necessary. This in turn leads 
to a reduction in complexity (automated creation of 
the EMS), reduces costs (less manual engineering) 
and results in a better data basis (standardized 
information of the DTs).  

However, if one of the three conditions is not met, the 
automated creation of an EMS becomes more 
difficult (Figure 2). 

The EMS and the heat pump both have an AAS and 
the standardized interface 
"GetAllSubmodelElementsBySemanticId". However, 
while the AAS of the EMS is based on the ECLASS 
standard, the AAS of the heat pump uses a 
manufacturer-specific vocabulary: the two AASs are 
based on heterogeneous semantics. Therefore, the 
ECLASS semanticID is not recognized and the value 
of the requested property cannot be returned. Thus, 
an automated query and integration of energy-
relevant values into an EMS is not possible. Instead, 
the semantics of the properties would have to be 
analyzed and manually linked to an EMS. This in turn 
leads to increased complexity and rising costs. 

One way to solve the problem of heterogeneous 
semantics is to use Semantic Matching (SM) [9 ⁠, 10]. 
Here, methods from the field of artificial intelligence, 
specifically natural language processing (NLP), are 
used to map heterogeneous semantics to each other. 

This paper designs interfaces that AAS can use to 
implement an SM service. The interfaces are first 
specified in a technology-neutral way and then as an 
API. Additionally, the specified interfaces are 
implemented prototypically to show how they can be 
integrated into an AAS. By means of the interfaces it 
is also possible to process heterogeneous semantics. 
This further simplifies the implementation of EMS.  

Fig. 1 - Interaction between two Digital Twins 

Fig. 2 - Failed Interaction of two Digital Twins 
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2. Background

I4.0 interfaces and NLP methods are used to 
implement an SM service.  

2.1 The Asset Administration Shell 

The transformation from rigid value chains to 
flexible, highly dynamic and globally networked 
value networks characterizes the current efforts of 
organizations towards I4.0. Various fields of action 
are being addressed for this purpose, one of the 
central ones being the topic of interoperability [11]. 
In the field of I4.0, the concept of the AAS has 
established itself as the basis for interoperability. 
The AAS is the digital representative of an asset in the 
digital world [12]. Here, an asset can be any entity 
that has value for an organization [13]. The 
information model of the AAS defines the structure 
of how information of different assets must be 
arranged[4]. The composition of AAS and asset is 
called I4.0-component. The central building blocks of 
the AAS are submodels, which represent the 
properties and functionalities of the assets and their 
contents in the form of submodel elements (SE) [4]. 
Submodels represent, for example, identification, 
design, or configuration. In addition to the specified 
structure through the information model, a unique 
semantics is required for the interaction of I4.0-
components [12 ⁠, 14]. This is achieved if the 
submodels are available in standardized form and 
their semantics are also uniformly standardized. The 
semantics of submodels or SEs can be uniquely 
described by semantic IDs to locally stored or online 
available repositories or ontologies.  

Various initiatives standardize submodels for 
technical components, e.g. pumps or drives [15 ⁠, 16]. 
The integration of the submodels in vocabularies 
available online [6 ⁠–8] enables the unambiguous 
identification of the submodels and their SEs and 
thus paves the way for unambiguous semantics. In 
the current I4.0-approach, interoperability is 
achieved through a uniform structure (information 
model AAS), semantics (homogeneous language 
space) and the provision of services based on 
standardized interfaces. 

2.2 Industrie 4.0 Interfaces 

The access to the information of an AAS is realized by 
interfaces, provided by the AAS. To enable 
automated access to the interfaces of different AAS, 
these interfaces are standardized. According to [5] 
the I4.0-service model describes four levels that are 
passed through during the standardization of 
interfaces. First, at a technology-neutral level, the 
interfaces and associated operations are described in 
a general textual form. The second level describes 
how these general descriptions can be applied in 
different technologies (e.g., HTTP/REST, OPC UA, 
MQTT). The third level is called the implementation 
level and includes the implementation of the 
interfaces using a concrete language such as Python 
or Java. The last level describes the runtime level, i.e., 

the concrete implementation of the interfaces in an 
I4.0-environment. [5]  

In [5] the levels 1 and 2 of different interfaces are 
described, e.g. "GetSubmodel". This interface can be 
called to retrieve a specific submodel of an AAS. The 
general interfaces can be provided in different 
services. A service consists of different interfaces 
[13]. A basic distinction is made between 
"Infrastructure Services" and "Application relevant 
Software Services". Infrastructure services refer to 
general services that can be reused in concrete 
application services. Asset-related services, which 
are provided by AAS, represent a subcategory of 
application services. [17]  

2.3 Semantic Matching for Industrie 4.0 
Administration Shells with heterogenous 
semantics 

Currently, the I4.0 research approach focuses on 
homogeneous semantics to achieve semantic 
interoperability and interoperability based on it. If 
AAS with heterogeneous semantics are used, 
interoperability cannot be guaranteed [4]. To extend 
this approach to heterogeneous semantics, a method 
is developed that can automatically map 
heterogeneous semantics to each other. This method 
is called semantic matching (SM) [10]. The basis of 
SM are methods from the NLP domain. The goal of 
NLP is to make computers understand human 
language and realize interactions based on it [18]. 
For this purpose, Language Models (LM) (e.g. [19 ⁠–
24] are used. The training of these takes place in a
two-stage process. In the first step, the models are
trained on large amounts of general text
(pretraining). In the second step (fine tuning ) the
models are trained for specific NLP tasks (e.g. text
classification or question answering). Based on these
LMs and the specific NLP task of paraphrase
identification [25] heterogeneous semantics can be
processed.

The developed approach is based on the idea that 
two SEs can have different names and definitions, 
though having the same semantic content, like the 
example in Figure 2. In the applied model 
(DistilBERT-SE), name and definition of two SEs are 
passed through forming sentence embeddings [26] 
first. In the form of vectors, these embeddings 
contain the semantic information of the SEs’ names 
and definitions. Using cosine similarity, the similarity 
of the sentence embeddings is checked and output 
whether the two SEs are paraphrases, i.e. whether 
they have the same semantic meaning. In initial 
studies, this approach was investigated using 
heterogeneous pump SEs as an example. The results 
with an accuracy of 94% show that this approach 
provides first promising results [10]. 

To improve the results, the DistilBERT [22] model 
was additionally trained on domain-specific 
literature [27]. Furthermore, additional attributes 
(e.g. unit) of SEs in AAS of pumps and HVAC systems 
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were used to classify the semantics of SEs. A decision 
tree was implemented for this purpose. The 
combination of the decision tree and the LM 
"Eng_DistilBERT-SE" results in the overall model 
"MetaEng-DistilBERT-SE" (Figure 3), which is 
described in more detail in [9].  

Fig. 3 – The MetaEng-DistilBERT-SE model 

This model will be used in the further course of the 
implementation of the interface.  

3. Industrie 4.0 Interface for
Semantic Matching

This paper specifies the "Semantic Matching" 
interface. For this purpose, the first three levels of the 
I4.0-service model are developed. In addition, it is 
shown how this can be used within an EMS to enable 
the automated integration of semantically 
heterogeneous information into such an EMS.  

 3.1 Technology-neutral specification 

The SM interface is composed of two interface 
operations. The first operation is called 
"PostAssetAdministrationShellEmbeddings" 
(PAASE) (Appendix A). The input to the operation is 
a component's own AAS. The operation is called from 
its own AAS and therefore has no output parameter 
that is returned to another AAS. With the help of this 
operation, the content of an AAS, specifically the 
individual SEs of it, passes through the model 
"MetaEng-DistilBERT-SE" (Figure 4).  

Fig. 4 - Operation PostAssetAdministration-
ShellEmbeddings 

First, the metadata is processed in the decision tree 
and assigned to one of the pre-trained classes. The 
attributes of the SE from Table 1 are first mapped to 
the parent classes (Watt to Power, Real Measure to 

Real) and then assigned to class 28 by the decision 
tree. This class acts as the index of the database to be 
created. In parallel, the name and definition of the SE 
run through the "Eng-DistilBERT-SE" model and the 
sentence embeddings are formed. These embeddings 
are then concatenated and written to the matching 
index of the database together with the semantic ID 
of the SE. This database is initialized and created 
when the operation is called. 

Tab. 1 -Example for an SE from an AAS 

The second interface operation is called 
"GetAllSubmodelElementsBySemanticIdAndSemanti
cInformation" (GASEIBSIASI) (Appendix B). The goal 
of this operation is to return the matching SE of its 
own AAS (Figure 5).  

Fig. 5- Operation GASEIBSIASI 

The input parameters of this operation are the 
attributes of the SE to be matched. First, the semantic 
ID is used to check whether the two AASs use a 
homogeneous language space. The semantic ID of the 
SE to be matched is first compared with all semantic 
IDs in the database of the SEs of the own AAS. If a 
semantic ID returns a match with the semantic ID to 
be matched, this SE is returned as matching. 
Matching based on the other attributes does not need 
to be performed since the same vocabulary is used. If 
no match is found, the attributes are passed to the 
"MetaEng-DistilBERT-SE" model (step 2), classified 
and the sentence embeddings are formed. According 
to the class formed on the basis of the meta 

AAS Metamodel AAS Pump 

Submodel Element Property 

Category VARIABLE 

Qualifier Operation 

Unit Watt 

Data type REAL_MEASURE 

Preferred name Pump power output 

Definition measured useful 
mechanical power 
transferred to the fluid 
during its passage through 
the pump 

Semantic ID 0173-1#02-ABC172#001 
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information, all embeddings of the own AAS 
belonging to this class are returned from the 
database.  

Each of these sentence embeddings is then compared 
to the requested SE using cosine similarity. The SE 
with the highest similarity is classified as a 
paraphrase and returned as an output parameter 
along with the corresponding cosine similarity.  

3.2 Technology-specific and implementation 
level 

In the technology-specific level, the generally 
specified interface SM and the two operations are 
mapped to a specific API. In this paper, HTTP/REST 
is used as the technology. The implementation of the 
interface and the associated operations is carried out 
using Python. The Python framework FastAPI [28] is 
used to implement the API. The API provided via 
FastAPI for calling the two operations is shown in 
Figure 6.  

Fig. 6 – Interface Semantic Matching 

When an AAS is passed to the PAASE operation, the 
model is first run and the results are stored in a 
database [29].  

When the operation "GASEIBSIASI" is called, it is first 
checked with the database whether a common 
language space is used. If not, the SM is subsequently 
performed and the result is returned to the 
requesting AAS. An example of such a call is given in 
Figure 7.  

Fig. 7 – Calling the operation GASEIBSIASI 

An own SE can be defined via the mask. The 
necessary attributes for calling the operation must 
be filled in here. If, as in the example, no unit is 
available, the value can be left empty, this is 
intercepted via the function. This request is made to 
the API and processed. The response is shown in 

Figure 8. 

Fig. 8 – Response of the server 

The semantics of the requested AAS is based on the 
ECLASS standard. The SE defined in the mask, 
however, is not based on any standard. Therefore, a 
homogeneous language space does not exist. After 
the implemented model has been run through, the 
appropriate SE is returned as the response.  

The example shows that as a request the name of the 
manufacturer was asked. Although the requested 
AAS is based on a different vocabulary and the name 
and definition do not match the requested name and 
definition, the matching SE was still returned. 
Accordingly, the model processed the request 
correctly and interpreted the semantics of the 
requested SE correctly.  

The example shows the basic flow of the SM. The 
following chapter describes how this can be 
integrated into an I4.0-environment in further 
developments and made available for an automated 
EMS.  

3.3 Integration of the Semantic Matching 
Service into an I4.0-environment 

The interface is deployed as a Docker Image. Docker 
Images can be downloaded from Docker Hub and 
used as a Docker Container as one application on one 
system. All installations required for this application 
are included on the image. [30]  

The SM interface has been implemented as a Docker 
image so that it can be easily used in an I4.0 
environment (Figure 9).  

The AAS of the heat pump provides the endpoint for 
API access to the SM interface to other AASs. The 
EMS's AAS then sends a request, as in Section 3.2 to 
the heat pump's AAS, requesting the SE. This AAS has 
implemented the Docker image as a Docker 
container within its runtime environment and can 
thus access the operations of the container. The 
simple implementation of the container makes it 
possible to implement this interface within AAS.  

If several AAS are implemented by different 
components in a building, an EMS can now simply be 
set up. If, for example, energy-relevant variables such 
as power consumption, power demand, etc. are to be 
integrated from each component, the individual AAS 
of the components can be queried for these variables. 
If positive feedback is received about the existence of 
these variables, they can be integrated into the EMS. 
Time-consuming examinations of all SEs of each AAS 
for the appropriate energy-relevant variables are no 
longer necessary. The setup of an EMS in a building 
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is significantly simplified by the SM service. 

4. Conclusions

The results extend the current I4.0-research 
approach to the interaction of semantically 
homogeneous to semantically heterogeneous AAS. 
For this purpose, NLP methods were used to 
implement an automated SM on a target vocabulary. 
The SM service was specified as an I4.0-interface and 
is composed of two operations that are called when 
the interface is used. The interface was expressed 
and prototyped as an HTTP/REST API. This 
demonstrated that the interface can be used to 
process heterogeneous semantics. However, for the 
interface to be used by AAS, standardization is 
necessary. For this purpose, the interface will be 
brought into the corresponding I4.0 working groups 
to perform a standardization. 

EMS are an important factor to increase the energy 
efficiency of buildings. In order to simplify the  

implementation of these and reduce costs, the use of 

DTs of technical components must be pushed further. 
In this context, the presented SM service represents 
a possibility to process heterogeneous semantics of 
components and thus reduces a potential conflict in 
the widespread use of EMS. In this paper, the AAS 
was used as the digital representation. In order to 
cover further specifications of DTs the SM service 
must be adapted to their structure. 

The datasets generated during the current study are 
available in the Labor GART repository, 
https://github.com/thcologne-gart 
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6. Appendices

Appendix A 

Operation 
Name 

PostAssetAdministrationShellEmbeddings 

Explanation Takes all submodel elements of the submodels of an Administration Shell, forms embeddings 
and writes them to a database 

Name Type Description 

Input Parameter 

aas AssetAdministraionShell AssetAdministration Shell object 

Fig. 9 - Interaction EMS with heat pump based on heterogeneous sematics 
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