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Abstract. Self-organizing systems represent the next stage in the development of automation 

technology. For being able to interact with each other in an interoperable manner, it requires a 

uniform digital representation of the system’s components, in the form of digital twins. In 

addition, the digital twins must be semantically interoperable in order to realize interoperability 

without the need for costly engineering in advance. For this purpose, the current research 

approach focuses on a semantically homogeneous language space. Due to the multitude of actors 

within an automation network, the agreement on a single semantic standard seems unlikely. 

Different standards and vendor-specific descriptions of asset information will continue to exist. 

This paper presents a method extending the homogeneous semantics approach to heterogeneous 

semantics. For this purpose, a translation mechanism is designed. The mapping of unknown 

vocabularies to a target vocabulary enables the interactions of semantically heterogeneous 

digital twins. The mapping is based on methods from the artifcial intelligence domain, specifically 

machine learning and natural language processing. Semantic attributes (name, definition) as well 

as further classifying attributes (unit, data type, qualifier, category, submodel element subtype) 

of the digital twins’ attributes are used therefore. For the mapping of the semantic attributes pre-

trained language models on domain specific texts and sentence embeddings are combined. A 

decision tree classifies the other attributes. Different semantics for submodels of pumps and 

HVAC systems are used as the evaluation dataset. The combination of the classification of the 

attributes (decision tree) and the subsequent semantic matching (language model), leads to a 

significant increase in accuracy compared to previous studies. 
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1. Introduction

The change to self-organizing systems is shaping the 
next development stage of automation technology. In 
automation technology, the digital, global 
networking of systems with self-x capabilities is 
being pushed. Self-x capabilities are understood as 
functionalities of a system that enable intrinsic 
automatisms for network exploration, self-
configuration, -diagnosis and -optimization. Self-x 
capabilities of systems enable interoperability and 
automation based on it. Interoperability means that 
systems actively collaborate across specific product, 
system, and process boundaries to meet common 
functional fulfillments [1 , 2]. If this cooperation is 
automated, manual configuration and control efforts 

are reduced and result in an optimization of the value 
chain.  

If interoperability is guaranteed for systems of 
technical building equipment (TBE), a self-
configuration of interactions (e.g. the integration of 
energy values into a monitoring application) can be 
realized by means of automatically executable rules 
and engineering efforts can be avoided or essentially 
reduced. A prerequisite for the interoperability of 
systems is their digital, uniform representation, as 
well as the guarantee of semantic interoperability 
(SI) of the systems. SI refers to the ability to correctly 
exchange data among themselves and to understand 
what they mean [3]. 

Copyright ©2022 by the authors. This conference paper is published under a CC-BY-4.0 license. 1 of 8



To achieve SI, the current research approach focuses 
on semantically homogeneous descriptions of 
systems [2 , 4]. This homogeneity comes from 
standardization and harmonization activities of 
information for different components of industry 
and TBE (e.g. [5 –8]). If, for example, properties for 
the power consumption of different components are 
based on a uniform vocabulary, they can be 
automatically integrated into a monitoring 
application (Figure 1) [9].  

Fig. 1 – Semantically homogeneous AAS 

However, if systems are based on heterogeneous 
vocabularies, interactions must be configured 
through manual effort and expert knowledge. This is 
the current state of the art for the majority of 
industrial and building applications. Because of the 
effort involved, operators carefully weigh the 
implementation of multi-vendor applications, such 
as plant asset management applications, against 
their benefits. The high configuration effort stands in 
the way of the wide availability of these applications. 
[10] 

This paper contributes to extending the research 
approach from interactions of semantically 
homogeneous to heterogeneous systems. The 
interoperability of semantically heterogeneous 
systems can be achieved by mapping heterogeneous 
descriptions, to the, underlying semantic standard of 
the respective components. This paper presents the 
method of automated matching, which allows 
systems to map semantically heterogeneous 
descriptions to their own standard independently 
and without configuration (Figure 2).  

Fig. 2 – Semantically heterogeneous AAS 

The starting point for matching is the information 
from the digital representations of the components. 
These are available in a uniform structure, but do not 
follow a semantically uniform standard. Methods 
from Natural Language Processing (NLP) [11] serve 
as the basis for matching semantic attributes. 

In a first draft [12] the semantic attributes "name" 
and "definition" of heterogeneously labeled pump 
properties from the project [8] were used for 
automated matching. The mapping of heterogeneous 
semantics to a defined target vocabulary was 
achieved using a pretrained language model (PLM). 
For technical language understanding, extended 
pretraining of the PLM was performed with technical 
literature (Step 1, Figure 3). Combined with sentence 
embeddings (SeEm), the PLM was then refined on 
general paraphrase identification (PI) datasets to 
learn the matching task (Step 2, Figure 3). [12]  

In this paper, the extended pretraining (Step 1, 
Figure 3) is considered on additional domain-specific 
literature. In addition, the evaluation dataset is 
extended to include properties from air handling 
units (Step 3, Figure 3). However, the focus of the 
extension of the first model design from [12] is the 
integration of meta-information of the properties as 
complementary parameters for a previous 
classification of the properties (Steps I-II, Figure 3).  

Fig. 3 – Training process 

2. Background

Interoperability is a central pillar in the efforts to 
transform systems of automation technology into 
self-organizing systems [2]. It requires a digital 
representation of systems and the structured 
provision of their information. SI is required for 
mutual understanding of the information. 

2.1 The Asset Administration Shell 

For the digital representation of technical 
components, different concepts like [13] or [14] have 
been established in the technical domain. In this 
paper, we build on the concept of the asset 
administration shell [14] (AAS) as the digital 
representative of an asset. In this respect an asset can 
be understood as any entity (physical or logical) 
being of value to an enterprise [15]. The AAS 
originates from the field of Industrie 4.0 (I4.0), but 
can also be used for the digitalization of TBE. The 
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composition of asset and AAS is referred to as an I4.0-
component [14].  

A prerequisite for the automated exchange of 
information is the representation of all component 
information in standardized digital form within an 
AAS. This is realized by structuring the content into 
standardized submodels, which represent topics 
such as identification, design and configuration[14]. 
In the submodels, associated properties and 
functionalities of the asset are represented as 
submodel elements (SEs). SEs inherit mandatory and 
optional meta-level attributes from higher-level 
classes (Figure 4) [14]. 

Fig. 4 - Class of the SE with its superordinate classes 
(own representation based on [14]) 

The class HasSemantics prescribes, for example, the 
mandatory definition of a SemanticID, which 
references a semantic definition of the SE.  Further is 
the data type and the definition of the SE derivable as 
mandatory information from the class 
HasDataSpecification. [14] 

2.2 Semantic Interoperability with 
homogenous semantics 

To ensure interoperability according to the I4.0 
research approach, the contents of the submodels 
must be standardized. Various initiatives 
standardize submodels for industrial components, 
e.g. pumps or drives[5 , 8]. 

In addition to the uniform structure of the submodel 
contents by the information model, a uniform 
semantic language understanding of the information 
is required for the interoperable interaction of I4.0 
components [4]. The integration of the submodels 
into dictionaries such as the ECLASS standard [16] 
enables the unambiguous identification of the 
submodels, as well as their SE, thus paving the way 
for homogeneous semantics.  

Accordingly, the I4.0 approach requires a uniform 
structure (information model management shell) 
and semantics (homogeneous language space) to 
achieve interoperability. [14] Heterogeneous 
language spaces, i.e. language spaces that are not 
captured in standardized dictionaries, such as those 
available in manufacturer-specific descriptions, are 
not captured in the current I4.0 approach. 

2.3 Semantic Interoperability with 
heterogeneous semantics 

To achieve SI, it is possible to map heterogeneous 
semantics to each other in addition to using a 
uniform language space. This can be done either by 
semantically unique links to each other (Linked 
Data) or by automated matching.  

Linked Data describes the use of ontologies to 
semantically describe entities. Ontologies represent 
knowledge structurally in machine-readable format. 
By using standardized ontological markup 
languages, entities of different ontologies can be 
linked together, creating a semantic network, e.g. 
[17]. In the context of I4.0, linking allows the 
recognition of SEs’ semantics of one AAS by other 
AASs. The use of Linked Data in the technical domain 
requires knowledge of different ontologies and the 
creation of links between entities. In a 
comprehensive I4.0 value network, a large number of 
domain-specific ontologies of different components 
can be expected. Linking these requires a high level 
of analysis and engineering effort [18]. This 
complicates the use of Linked Data models.  

Automated matching is another mapping possibility. 
This is pursued in this paper. The method used here 
is based on concepts of NLP and enables 
configuration-free translation of vocabularies. It 
requires neither a common semantic standard nor a 
manual linking of heterogeneous language spaces.  

NLP is a subfield of artificial intelligence that enables 
computers to understand natural language (textual 
and phonetic) in order to perform tasks/actions 
based on it [11]. State of the art NLP models are 
based on the transformer architecture [19]. It is 
characterized by an encoder-decoder structure. The 
encoder is used for speech analysis and classification 
and the decoder for speech generation tasks. To 
cover more specific requirements in the areas of 
classification or generation, current models are 
usually characterized by either an encoder (e.g. [20]) 
or decoder structure (e.g. [21]). The model 
architecture for the semantic matching developed 
within this paper is based on an encoder 
architecture. 

The training of current LMs is divided into 
pretraining and finetuning [22]. First, LM are pre-
trained on large amounts of text and thus already 
learn a general understanding of the language. Based 
on this understanding, LM are adapted to specific 
tasks in a second training (finetuning) [23]. LM's 
language understanding is based on the 
representation of words in vectorized form, the word 
embeddings (WE). These WE are adapted during 
pretraining with different texts to represent the 
semantic meaning and relationships of the words. 
Thus, they are already capable of recognizing 
similarities or relationships, e.g., whether a word 
pair like Berlin and Germany has the same 
relationship as Madrid and Spain. In finetuning, the 
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WE are refined with specific data sets of a concrete 
use case. For automated matching of heterogeneous 
descriptions, this paper builds on the PLM 
DistilBERT [24]. 

2.4 The ISO-DistilBERT-SE Model 

The general DistilBERT model was pretrained on 
English literature in the form of the BooksCorpus 
[25] and English Wikipedia [24]. Research shows
that PLMs for domain-specific use cases achieve
better results with a second phase of pretraining on
specific literature [26]. Therefore, DistilBERT was
extended with training on ISO standards [27 –33] to
form the ISO-DistilBERT model (Step 1, Figure 3)
[12].

Subsequently, the model was used to be refined into 
ISO-DistilBERT-SE using data sets from the PI 
domain (Step 2, Figure 3). PI refers to the ability of a 
model to detect whether two sentences have the 
same meaning [34]. Here, the methodology of the 
Sentence BERT [35] model is adapted. The WE are 
combined into a Sentence Embedding (SeEm) with 
fixed dimension. Using cosine similarity, it is possible 
to check whether the SeEm of two sentences are 
similar and thus determine whether they are 
paraphrases [35]. The datasets used are the general 
datasets MultiNLI [36], STS-Benchmark [37] and 
QQP [38]. 

The model was then evaluated on a dataset created 
for this purpose (Step 3, Figure 3). For the ISO-
DistilBERT-SE model, this dataset contains different 
definitions and names for SEs from the pump 
identification and design domain.  

The ISO-DistilBERT-SE model achieves an accuracy 
of 94.33%. This shows that the use of the SeEm is an 
effective method to determine the similarity of SE 
based on the name and definition. Furthermore, an 
increase in accuracy of 2.46 percentage points was 
achieved by the extended pretraining [12]. 

3. Extension of the Semantic
Matching Model

In order to be able to use the model in concrete 
application scenarios, such as extensive plant asset 
management, the evaluation dataset will be extended 
to include additional SEs and associated paraphrases 
from the field of air handling system (AHs) 
technology. In addition, the following model 
developments will be made: More domain-specific 
literature will be added to the extended pretraining. 
Metadata will be integrated as a classification feature 
to increase the accuracy of the model.  

3.1 Extension of the evaluation data 

The data set for the evaluation of the model is 
extended from SE of pumps to SE of an entire air 
handling system. Each component of the AHS, as well 
as the AHS as a whole, have up to twelve submodels, 

which are divided into the topics identification, 
design, maintenance, control, etc. [8] In total, the 
target vocabulary is thus extended from a pump’s 39 
SE to 427 SE of an AHS. For each SE, up to eleven 
paraphrases consisting of name and definition are 
created. Thus, a total of 1052 paraphrases for the 427 
SEs of the target vocabulary are available for the 
evaluation of the model. The model is tested to match 
any name and definition of a SE from the paraphrase 
dataset to the matching SE of the 427 possible SEs in 
the target vocabulary. The larger the target 
vocabulary, the more difficult it is for the model to 
predict the matching SE of the target vocabulary 
from the possible SEs.  

3.2 Extended pretraining on domain-specific 
literature  

The extended pretraining from DistilBERT to ISO-
DistilBERT is based on ISO standards [12]. This is 
complemented with another dataset on Eng-
DistilBERT. The dataset includes 81.1M academic 
English papers from several disciplines [39]. These 
were filtered by engineering discipline, leaving 
228,000 papers for the extended pretraining. Thus, 
the model learns complementary, subject-specific 
vocabulary of the engineering domain. The pre-
trained model Eng-DistilBERT is then refined to the 
PI task following the presented procedure in [12] 
with the creation of SeEm. The refined model is 
referred to as Eng-DistilBERT-SE. 

3.3 Extension of the model through metadata 
classification 

The fault evaluation of the automated matching from 
[12] shows that errors occur mainly because
different SE are often designated and defined very
similarly. For example, there are several similarly
defined pressure limits for a pump. For a more
precise delimitation of the SEs among each other, a
classification performed in advance is introduced in
this paper. This is based on additional attributes, the
metadata of the SE. Pressure limit values, which
differ e.g., only by the time of their definition
(definition during manufacturing vs. planning), can
be distinguished from each other by an appropriate
meta information and thus do no longer qualify as
mutual paraphrase.

The first step is to select the metadata categories 
according to which a classifying algorithm delimits 
the SEs from each other. Since the whole model is 
based on the AAS information model, the metadata 
defined there are used for SE. The first metadata 
category AAS_Spec distinguishes the SE into the 
different subclasses property, file or SE collection. 
The properties, representing the majority of the SE, 
are further differentiated by the meta information of 
the category from the class Referable (Figure 4) 
according to the attribute Variable, Parameter or 
Constant. From the HasDataSpecification class 
(Figure 4), the data type and unit of an SE are taken 
as metadata categories. The qualifier according to 
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[41] is included as the last metadata to differentiate
SEs according to their lifecycle status. The metadata
selection is tailored to the present AHU plant
evaluation dataset in order to characterize the
existing SEs according to the most meaningful
metadata possible. For this purpose, the metadata
categories with their expressions in every possible
combination are elaborated and labeled for a
classification algorithm (Table 1). Since not all meta
information is mandatory according to [14] and [41]
e.g. the case that no qualifier is defined for an SE is
also considered as a possible combination.

Tab. 1 – Label of possible metadata combinations 

Thus, an SE can be labeled based on its metadata. The 
task of automated labeling places a multi-class 
requirement on a classification algorithm. For this 
purpose, a decision tree (DT) is trained according to 
[42] , which forms a structure of as few goal-directed
decision paths as possible from the data set of
possible metadata specifications in order to classify
the data effectively. The points on a path where the
next data decomposition is decided are called nodes.
The tree structure of the "Decision Tree Classifier"
according to [42] prescribes the maximum formation
of two classes per node. Thus, questions are asked in
a node, which can be answered binary with yes or no.
The structure of the DT and the formation of the next
node is determined automatically according to the
best Gini-Impurity [42] calculation of the algorithm.
The data basis of the DT are the possible metadata
combinations and associated labels to be predicted
(excerpt in Table 1). Figure 5 shows a section of the
decision tree created.

Fig. 5 - Detail of the decision tree 

The metric used to evaluate the model is accuracy. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Training the DT on possible metadata combinations 
achieves 100% accuracy. 

3.4 Combination of the Classifier and the LM 
Eng-DistilBERT-SE 

The processing of the metadata of an SE is used for 
pre-filtering, indicating which SE of the target 
vocabulary should be reasonably used for  
comparison, in order to find the correct paraphrase. 
Thus, the SEs of the target vocabulary that cannot 
represent a paraphrase due to different metadata are 
dropped. By reducing the number of possible 
paraphrases, the probability of a wrong assignment 
is minimized. 

Both the LM Eng-DistilBERT-SE and the DT are 
trained separately on their task to be solved. Eng-
DistilBERT-SE processes the semantic information of 
an SE. The DT assigns one or more possible metadata 
classes to the SE. In Semantic Matching (SM), first, the 
SeEms and the metadata class(es) of the SE in the 
target vocabulary are formed and the information is 
linked. For unique identification, the SEs of the target 
vocabulary are indexed. In the use case, an unknown 
SE is labeled with metadata class(es) and then 
receives the indices of the SEs of the target 
vocabulary that qualify as paraphrases based on 
their metadata class. The LM Eng-DistilBERT-SE then 
compares the SeEm of the SE only with the SeEm of 
the SE that is in the indexed selection(Figure 6).  

Fig. 6 - Advanced model MetaEng-DistilBERT-SE 

Thus, the additional information of the metadata 
class(es) acts as a filter for the PI of the LM. The fused 
model is called MetaEng-DistilBERT-SE. 

4. Evaluation

Table 2 presents the results of the different models 
on the newly created evaluation dataset. Increasing 
the target vocabulary from 39 to 427 decreases the 
accuracy of the original DistilBERT-SE model from 
94% to 64.7%. The improvement of the accuracy by 
2.3 percentage points of the model ISO-DistilBERT-
SE to DistilBERT-SE in [12] already showed that 
pretraining with technical literature is promising. 
This is confirmed by the renewed increase in 
accuracy by another 2.5 percentage points by adding 

AAS_ 

Spec 

Qualifier Category Unit_ 

Categ 

Meta-
label 

File OP - - 1 

File - - - 1|2 

File SUP - - 2 
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engineering papers to the pretraining (Eng-
DistilBERT-SE).  

Using the integrated metadata model, the MetaEng-
DistilBERT-SE model achieves an increase in 
accuracy of another 16.3 percentage points in the PI 
of SE task. This confirms the positive effect of 
classification by metadata in parallel with the 
processing of semantic information from SE to PI.  

Tab. 2 - Semantic Matching results 

Table 3 shows the influence of each metadata 
category on the model's output.  

Tab. 3 - Analysis of different variants of the metadata 
model MetaEng-DistilBERT-SE 

The greatest influence on the model is the 
classification of the data according to the meta 
information of category. It differentiates SEs from 
each other by distinguishing variable from 
parameterized and constant values. This not only 
helps to distinguish measured values from nominal 
values, but also covers life cycle status. Values 
defined by the manufacturer in the design phase are 
defined as constant. In contrast, the designer's 
specifications are classified as parameters, and 
operational values are classified as variable. One of 
the main sources of error in the Eng-DistilBERT-SE 
model was the distinction between similarly defined 
features that differ only in their life cycle status. 
Therefore, solving this problem by defining the 
category is particularly influential on overall 
performance. Since the qualifier is only optionally 
present in the data, it has less significance as a 
category than the compulsorily defined category of 
the SEs. The unit category helps to differentiate 
measurement values among themselves whose 
metadata are not distinguished from each other by 
the other categories. The omission of one of the 

metadata categories data type and AAS_Spec exerts 
little influence on the model since the remaining 
categories of the SE already unambiguously 
determine the metadata class in the respective 
version. A constant SE of the dataset is e.g., in 98.5 % 
of the cases a SE of the datatype String or Real. 
Without specification of the data type these two 
classes are nevertheless distinguished by the 
specification of the unit with physical SE. Overall, the 
influence of individual categories for the 
classification of SE depends on the available data 
distribution. However, the clear improvement of the 
PLM can be statued by the inclusion of a metadata 
classification. 

5. Conclusions

The results extend the current I4.0 research 
approach to the interaction of semantically 
homogeneous to semantically heterogeneous AAS. 
For this purpose, a combination of LMs, for mapping 
heterogeneous semantics, and a DT, for prior 
classification of the SE, was used. The results show 
that classification by the DT produces a significant 
increase in accuracy (70 to 86%). However, this 
needs to be further increased for acceptance in 
practice. For this purpose, other methods from the 
NLP field are applied to investigate how the accuracy 
can be increased. In addition, the information model 
of the AAS will be analyzed with respect to further 
metadata that can be used for classification.  

Besides improving the model, it will be 
prototypically implemented as an I4.0 service in an 
I4.0 environment [43]. For this purpose, an I4.0 
interface is specified that can be used within AAS to 
implement an SM service. The results are fed into 
relevant specification work to extend the interaction 
manager of AAS with an SM service. 

The datasets generated during the current study are 
available in the Labor GART repository, 
https://github.com/thcologne-gart 
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