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Abstract.	The	study	and	control	of	the	airflow	in	indoor	environment	is	of	great	importance	since	
it	directly	affects	human	daily	 life	primarily	 in	 terms	of	health	and	comfort.	Fast	and	accurate	
airflow	predictions	are	therefore	desirable	when	it	comes	to	built	environment	applications	of	
inverse	 design,	 system	 control,	 evaluation,	 and	 management.	 Computational	 fluid	 dynamics	
(CFD)	 enables	 detailed	 predictions	 through	 numerical	 flow	 simulations	 and	 it	 has	 been	
consistently	used	to	simulate	airflow	motion,	heat	transfer,	and	contaminant	transport	in	indoor	
environment.	 However,	 CFD	 still	 faces	 many	 challenges	 mainly	 in	 terms	 of	 computational	
expensiveness	and	accuracy.	With	digitization,	recent	interest	is	posed	on	new	data	driven	tools	
to	either	substitute	CFD	typically	for	faster	predictions	or	aid	the	CFD	simulation	for	improved	
accuracy.	More	specifically,	the	abilities	of	deep	learning	and	artificial	neural	networks	(ANN)	as	
universal	 non-linear	 approximator,	 handling	 of	 high	 dimensionality	 fields,	 and	 computational	
inexpensiveness	 are	 very	 appealing.	 This	work	 reviews	 current	 deep	 learning	 applications	 in	
built	 environment	 research,	which	 are	only	 limited	 to	 surrogate	modeling	 as	 replacement	 for	
expensive	CFD	simulation.	ANN	enables	fast	and	sometimes	even	real-time	prediction,	but	usually	
at	a	cost	of	a	degraded	accuracy.	For	this	reason,	we	also	critically	review	what	 it	 is	done	and	
presented	 in	 fluid	 mechanics	 simulations	 research	 in	 general,	 to	 propose	 and	 inform	 about	
different	 techniques	 other	 than	 surrogate	 modeling	 for	 built	 environment	 applications	 and	
possibly	 improve	 the	 predictions	 quality	 as	 well.	 More	 precisely,	 ANNs	 can	 enhance	 the	
turbulence	model	in	various	way	for	coupled	CFD	simulations	of	higher	accuracy,	improve	the	
efficiency	of	POD	decompositions	methods,	leverage	crucial	physical	properties	and	information	
with	physics	informed	deep	learning	modeling,	and	even	unlock	new	advanced	methods	for	flow	
analysis	such	as	super-resolution	techniques.	All	these	methods	are	very	promising	and	largely	
yet	to	be	explored	in	the	built	environment	scene.	Together	with	promising	advancements,	deep	
learning	methods	come	with	challenges	to	overcome,	such	as	the	availability	of	consistent	large	
flow	databases,	the	extrapolation	task	problem,	and	over-fitting,	etc.	
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1. Introduction
The	advent	of	the	era	of	digitization	is	enabling	the	
use	of	machine	learning	tools	to	provide	advances	to	
many	areas	of	research	in	scientific	and	engineering	
disciplines.	 Specifically,	 within	 machine	 learning,	
deep	 learning	 can	 leverage	 the	 growing	 amount	 of	
data	available	to	infer	predictions	over	a	broad	range	
of	 different	 problems,	 such	 as	 airflow	 simulations.	
Computational	Fluid	Dynamics	(CFD)	is	a	field	where	
data	 driven	models	 are	 showing	much	 potential	 in	
the	 latest	 years	 [1].	 Standard	 CFD	 deals	 with	

numerical	 simulations	 of	 fluid	 flows	 by	 solving	
physical	 flow	 equations.	 It	 is	 a	 useful,	 and	 widely	
used	tool	that	enables	detailed	predictions.	However,	
it	 has	 unfortunately	 some	 limitations,	 mainly	 in	
terms	 of	 computational	 expensiveness.	 The	 most	
accurate	 CFD	 approach	 that	 tries	 to	 fully	 capture	
turbulence	 phenomena	 of	 the	 flow,	 called	 Direct	
Numerical	Simulation	(DNS),	is	in	fact	still	unfeasible	
in	most	practical	applications	due	 to	 the	extremely	
high	 computational	 power	 required	 to	 solve	 the	
equations	 for	 the	 discretized	 grid.	 Other	 common	
CFD	 approaches	 are	 the	 so-called	 Large	 Eddy	
Simulations	 (LES)	 and	 Reynolds	 Averaged	 Navier	
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Stokes	 equations	 (RANS)	 methods.	 The	 latter	 in	
particular	 is	 significantly	 less	 computational	
demanding	 than	 DNS	 but	 introduces	 assumptions	
and	turbulence	models	which	eventually	increase	the	
number	 of	 uncertainties	 and	 lower	 the	 overall	
accuracy	of	the	simulation	[2].	Besides,	the	problem	
with	 CFD	 simulations	 in	 built	 environment	 is	 that,	
even	with	small	indoor	domain,	the	airflow	is	quite	
complex,	 making	 even	 RANS	 simulations	 quite	
demanding	in	processes	where	fast	predictions	and	
control	are	necessary.	Even	though	very	fast	or	real	
time	predictions	are	unfeasible,	RANS	represents	the	
industry	standard	and	it	is	widely	used	in	the	indoor	
environment	to	simulate	turbulent	airflow	[3],	heat	
transfer	[4],	and	contaminant	transport	[5].	It	is	also	
used	in	the	urban	environment	to	simulate	wind	flow	
around	buildings	 [6]	 or	 at	 pedestrian	 level	 [7]	 and	
tracking	 pollutants	 [8].	 While	 new	 improved	 CFD	
techniques,	 algorithms	 and	 models	 are	 appearing,	
recent	 interest	 is	 posed	 on	 new	 data	 driven	 tools,	
deep	 learning,	 to	 either	 substitute	 or	 aid	 CFD	
simulations.	 This	 work	 will	 review	 the	 current	
research	 on	 the	 interaction	 between	 built	
environment	 fluid	 dynamics	 simulations	 and	 deep	
learning	algorithm.	Deep	learning	 is	 the	supervised	
learning	 class	 based	 on	 Artificial	 Neural	 Networks	
(ANNs)	 [9],	 which	 task	 is	 to	 map	 the	 function	
between	inputs	and	outputs.	ANNs	are	composed	of	
a	number	of	hidden	layers	between	input	and	output,	
Figure	 1	 shows	 an	 ANN	 in	 its	 most	 standard	
architecture:	the	Multi-Layer	Perceptron	(MLP)	[9].	

Fig.	1	 -	A	 four	Layer	MLP,	with	a	3	nodes	 input	 layer	
colored	 in	 light	 blue,	 3	 hidden	 layers	 of	 5-5-3	 nodes	
respectively	in	white,	and	a	2	nodes	output	colored	in	
pink.	

Applications	 with	 deep	 learning	 architectures	 of	
different	 types	will	 be	 reviewed.	Besides	MLPs	 the	
most	common	to	be	found	are	Convolutional	Neural	
Networks	 (CNNs)	 [10]	 and	 Recurrent	 Neural	
Networks	 (RNNs)	 [11].	 CNNs	 are	 developed	 and	
adapted	 for	 computer	 vision	 tasks	 and	 pattern	
recognition.	 RNNs,	 instead,	 are	 specialized	 in	
working	 with	 time	 sequence	 data	 thanks	 to	 the	
presence	 of	 a	 feedback	 loop.	 In	 recent	 years,	 deep	
learning	algorithm	proved	 to	be	extremely	 flexible,	
highly	scalable	and	universal	approximator	of	non-
linear	functions,	such	as	equations	of	the	fluid	flows.	

2. Research Methods
The	 primary	 objective	 of	 this	 review	 paper	 is	 to	
inform	and	propose	new	interactions	between	built	
environment	 CFD	 simulations	 and	 deep	 learning	

algorithm.	 This	 interaction	 is	 not	 exactly	 new	 or	
never	 explored	 before.	 There	 are	 already	 some	
works	 that	 substitute	 CFD	 simulations	 with	 deep	
learning	algorithm	using	the	ANN	as	surrogate	model	
of	 the	numerical	 simulation,	which	 are	 going	 to	 be	
reviewed	in	section	3.	Surrogate	modeling	generally	
solves	one	of	the	main	problems	of	CFD	simulations	
being	their	general	expensiveness.	Depending	on	the	
specific	problem,	 surrogate	modeling	 can	 allow	 for	
order	 of	magnitudes	 [12]	 faster	 airflow	prediction,	
even	 real-time	 predictions	 in	 some	 cases	 [13].	
However,	 the	 landscape	 of	 interaction	 is	 mostly	
limited	to	surrogate	modeling,	and	what	is	generally	
wanted	and	desired	is	to	obtain	fast,	but	also	accurate	
predictions	 of	 flow	 quantities	 such	 as	 velocity,	
pressure,	temperature	and	pollutant	concentrations	
to	 provide	 and	 control	 thermal	 comfort	 to	 indoor	
environments.	 Even	 though	 the	 main	 objective	 of	
surrogate	modeling	is	to	reduce	computational	cost	
while	keeping	 the	same	order	of	accuracy	 [14],	 the	
computational	inexpensiveness	usually	comes	at	the	
cost	 of	 degraded	 accuracy.	 Surrogate	 modeling	 is	
often	 built	 from	 and	 compared	 with	 RANS	
simulations,	which	still	present	all	the	uncertainties	
stated	above.	 In	 the	best	 cases	ANNs	produce	very	
similar	 results	 in	 terms	 of	 accuracy,	 but	 worse	 in	
others.	 This	 review	 aims	 to	 show	 that	 surrogate	
modeling	 is	 not	 the	 only	way	 to	make	 use	 of	 deep	
learning	architecture	together	with	CFD	simulations.	
By	 critically	 reviewing	 in	 section	 4	 some	 major	
applications	 of	 deep	 learning	 that	 have	 been	
attempted	 in	 fluid	 mechanics	 research,	 hints	 and	
opportunities	 for	 future	 research	 on	 integration	 of	
ANNs	and	CFD	for	built	environment	applications	are	
proposed.	 The	 number	 and	 kind	 of	 deep	 learning	
interactions	in	fluid	mechanics	is	in	fact	much	larger	
allowing	 for	 a	 systematic	 review	 of	 different	
techniques	 such	 as	 turbulence	 model	 tuning	 and	
enhancement,	surrogate	modeling,	POD,	and	super-
resolution.	Finally,	section	5	offers	a	discussion	about	
possible	opportunities,	but	also	challenges	for	deep	
learning	methods	to	aid,	substitute,	or	improve	CFD	
simulations	for	the	built	environment.		

3. Built Environment applications
Numerous	 indoor	 environment	 applications	 are	
strictly	 connected	 to	 the	 study	 and	 simulations	 of	
fluid	flows.	Fast	and	accurate	predictions	of	variables	
such	as	velocity,	pressure	and	temperature	profiles	
are	desirable	in	this	context.	Some	examples	of	CFD	
simulations	 that	 are	 consistently	 performed	 in	 the	
indoor	environment	 for	 inverse	design	are	 thermal	
comfort	analysis,	pollutant	dispersion,	HVAC	system	
control,	 etc.	 For	 the	 outdoor	 environment,	 the	
simulations	 of	 wind	 and	 tracking	 pollutants	 are	
conducted	at	various	urban	levels.	Thermal	comfort	
in	the	indoor	environment,	such	as	vehicle	cabins	of	
cars	but	also	aircraft	is	a	challenging	problem	which	
has	 been	 attempted	 to	 solve	 with	 increased	
popularity	 by	 inverse	 design.	 Together	 with	 these	
methods,	deep	learning	models	have	started	to	cover	
an	 important	 place	 in	 these	 applications.	 Deep	
learning	 techniques	 have	 already	 been	 widely	
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applied	since	the	early	2000s	in	specific	topics	such	
as	 building	 energy	 predictions	 [15,16,17]	 or	 HVAC	
system	 control	 [18,19].	 However,	 data	 driven	
interactions	with	CFD	simulations	are	still	limited	in	
quantity	and	diversity	of	approach.	The	vast	majority	
of	applications	are	limited	to	substituting	surrogate	
modeling	 for	expensive	CFD	simulations	 to	achieve	
faster	 predictions.	 CFD	 simulations	 can	 in	 fact	 be	
very	 computationally	 demanding,	 especially	 in	 the	
design	process,	emergency	management	and	control,	
where	 fast	 predictions	 are	 necessary,	 or	 in	 the	
outdoor	environment	where	the	simulation	domain	
is	 usually	 large.	 The	 main	 objective	 of	 surrogate	
modeling	 is	 to	 reduce	 computational	 cost	 while	
keeping	the	same	order	of	accuracy	[14].	Section	3.1	
reviews	the	studies	on	the	topic.	

3.1 Deep learning surrogate modeling in the 
built environment 

In	the	work	by	Hintea	et	al.	[13],	from	a	minimalistic	
set	 of	 cabin	 environment	 sensors,	 several	 different	
machine	 learning	 algorithm,	 including	 a	 standard	
MLP	 network	 and	 a	 random	 forest	 algorithm,	 are	
used	 and	 compared	 to	 approximate	 equivalent	
temperature	 inside	 a	 car	 to	 obtain	 real-time	
predictions.	 The	 equivalent	 temperature	 is	
measured	at	eight	body	locations	to	provide	a	direct	
estimation	of	thermal	comfort.	Eventually	the	fastest	
prediction	is	delivered	by	a	simpler	linear	regression	
model,	while	 the	MLP	obtains	 the	highest	accuracy	
overall.	As	shown	instead	by	other	works	(Zhang	et	
al.	 [20,21]	 and	Warey	et	 al.	 [22]	 for	 instance),	CFD	
simulations	 are	 not	 discarded	 completely,	 but	 still	
used	as	high	fidelity	solution	necessary	for	training	
the	deep	 learning	algorithm.	Warey	et	 al.	 [22]	 (see	
Figure	2)	use	deep	 learning	models	 to	quantify	 the	
thermal	comfort	of	indoor	vehicle	cabins	for	different	
boundary	conditions	of	air	temperature,	but	also	air	
velocity,	humidity,	glazing	conditions,	etc.	To	better	
assess	the	indoor	thermal	comfort	this	time	not	only	
an	equivalent	temperature	analysis	is	performed,	but	
also	 on	 more	 advanced	 evaluation	 scores,	 the	
predicted	mean	vote	and	the	predicted	percentage	of	
dissatisfied	 people.	 These	 scores	 evaluate	 thermal	
comfort	from	a	more	rational	perspective	[23].	CFD	
simulations	 previously	 validated	 with	 wind	 tunnel	
experimental	 measurements	 are	 generated	 to	 be	
used	to	train	the	deep	learning	algorithm,	which	was	
then	 applied	 also	 to	 different	 fields	with	 real	 time	
predictions.	 Instead,	 Zhang	 et	 al.	 [20]	 first	 use	 a	
shallow	 standard	 MLP	 in	 general	 indoor	
environments	with	CFD	as	training	data	to	solve	the	
inverse	 design	 problem	 and	 identify	 a	 possible	
relationship	 between	 thermal	 comfort	 and	 inlet	
boundary	condition.	Later	on	in	another	work,	Zhang	
et	al.	[21]	apply	the	based	knowledge	on	a	simplified	
first	class	aircraft	cabin	environment.	This	time	the	
deep	learning	surrogate	model	is	integrated	inside	a	
genetic	 algorithm	 and	 the	 results	 are	 compared	
against	 a	 57%	 more	 computationally	 expensive	
classic	genetic	algorithm	without	deep	learning	tools.	
Three	shallow	MLPs	are	singularly	trained	to	obtain	
the	 predicted	mean	 vote,	 the	 air	 age	 and	 the	 draft	
rate,	 the	 latter	 assessing	 the	 local	 discomfort	 for	

humans.	

Fig.	 2	 -	 Two	 examples	 of	 deep	 learning	 surrogate	
modeling	for	built	environment	applications.	Above	the	
study	of	 thermal	 comfort	 for	 indoor	vehicles	 cabin	by	
Warey	et	al.	[22].	On	the	bottom,	the	optimization	study	
of	urban	wind	flow	simulations	by	Tanaka	et	al.	[12].	

Upgrading	 the	 scale	 of	 simulations	 from	 indoor	 to	
external	 environments,	 like	 urban	 cities,	 accuracy	
deterioration	 and	 struggle	 to	 consider	 other	
boundary	 conditions	 such	as	 traffic	or	weather	are	
inevitable.	 Tanaka	 et	 al.	 [12]	 (see	 Figure	 2),	 study	
urban	 flow	 simulations	 where	 the	 location,	
dimension	 and	 shape	 of	 four	 tall	 buildings	 were	
optimized	in	a	restricted	area	with	the	construction	
of	a	CFD	optimization	tool.	The	objective	is	to	reduce	
wind	 forces	 on	 buildings	 and	mitigate	 local	 strong	
winds	at	pedestrian	level.	The	focus	of	the	paper	still	
resides	 on	 CFD	 RANS	 simulations,	 which	 are	
eventually	used	to	train	a	deep	CNN	encoder-decoder	
for	 ultra-fast	 (0.005	 seconds)	 predictions.	 They	
estimate	 the	 CNN	 predictions	 to	 be	 about	 fifty	
thousand	times	faster	than	RANS.	However,	the	ANN	
predictions	show	lack	of	accuracy	compared	to	CFD	
simulations	 especially	 in	 specific	 case	 that	 the	
network	was	not	trained	for,	such	as	different	wind	
directions.	 	 In	 Tanaka	 et	 al.	 [12]	 case,	 the	 deep	
learning	method	has	to	be	viewed	more	as	a	parallel	
tool	to	the	CFD	simulation,	useful	in	the	early	design	
process	for	example.	A	similar	example	is	also	given	
by	the	work	of	Ding	et	al.	 [24],	which	develop	data	
driven	regression	model	for	coupled	indoor-outdoor	
flow	 analysis	 together	 with	 CFD	 simulations.	
Eventually,	 surrogate	 modeling	 main	 advantage	
resides	 in	 the	 possibility	 to	 obtain	 really	 fast	 and	
inexpensive	 predictions,	 otherwise	 unfeasible	 with	
CFD	simulations.	It	also	comes	with	limitations	such	
as	 being	 strongly	 case	 dependent,	 without	 good	
generalizability,	 and	 in	 need	 of	 large	 training	 data	
sets.	 	 In	most	 indoor	environment	studies,	only	the	
case	 related	 data	were	 used	 for	 training.	 Then	 the	
trained	ANN	was	very	 likely	unfeasible	 for	another	
case	that	the	network	was	not	trained	for.		Its	limited	
accuracy	can	become	an	important	factor	in	practice.		
Many	 possibilities	 of	 utilization	 of	 deep	 learning	
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models	 that	 section	 4	 will	 cover	 are	 yet	 to	 be	
explored	in	the	built	environment,	possibly	to	further	
increase	also	the	accuracy	of	the	analysis	and	create	
more	trusty	models.		

4. Deep learning applied to Fluid
Mechanics

The	range	of	applicability	of	ANNs	is	in	general	much	
richer	 than	 what	 highlighted	 in	 section	 3.	 This	
section	 aims	 to	 inform	 about	 possible	 different	
techniques	 and	 applications	 of	 ANNs	 to	 drive	
forward	 the	 research	 in	 the	 built	 environment.	
Starting	 from	 the	 beginning	 of	 the	 1900s	with	 the	
first	 applications	 with	 very	 shallow	 ANNs	 [25,26],	
the	architectures,	models	and	types	of	interaction	are	
becoming	over	 the	year	more	and	more	 	 improved	
and	advanced.	Fluid	mechanics	research	is	not	only	
looking	at	deep	learning	methods	for	computational	
efficiency	 but	 also	 increased	 accuracy.	 Nowadays,	
fluid	 mechanics	 deep	 learning	 techniques	 sees	
numerous	possible	applications.	Some	of	them	make	
use	of	data-driven	machine	learning	models	as	an	aid	
for	 augmenting	 the	 CFD	 simulations	 and	 their	
turbulence	 models.	 Some	 others	 instead	 present	
deep	 learning	 architectures	 as	 surrogate	 model	 of	
fluid	 dynamics	 numerical	 simulation,	 similarly	 of	
what	is	also	done	in	the	built	environment.	Besides	
straightforward	substitution	of	CFD	with	ANN,	model	
order	 reduction	 and	 POD	 techniques	 are	 also	
reviewed.	There	are	some	other	applications	that	use	
completely	different	new	emerging	methods	such	as	
super-resolution	techniques.	

4.1 Turbulence modeling 

As	remarked	already,	deep	 learning	techniques	can	
be	 utilized	 in	 conjunction	with	 CFD	 simulations	 to	
increase	 the	 accuracy	 of	 simulations.	 Turbulence	
models	introduce	a	number	of	constant	coefficients	
varying	 from	 model	 to	 model,	 determined	
experimentally.	 Therefore,	 the	 RANS	 turbulence	
models	 are	 not	 universally	 capable	 for	 every	 flow,	
but	actually	depend	on	the	specific	 flow	features.	A	
first	obvious	way	to	utilize	deep	learning	algorithm	
on	turbulence	models	is	for	constant	tuning,	finding	
for	different	flow	applications	the	best	values	of	the	
coefficients	 of	 a	 particular	 turbulence	 model.	 For	
example,	 Yarlanki	 et	 al.	 [27]	 estimated	 the	
temperature	in	data	centers	using	a	tuned	standard	
RANS	turbulence	model,	allowing	a	reduction	of	the	
absolute	average	error	in	by	35%.	Another	example	
is	 the	work	by	Luo	et	 al.	 [28].	The	main	difference	
between	 the	 two	 is	 that	 Luo	 et	 al.	 [28]	 provide	 a	
physics	informed	neural	network	by	combining	the	
high-fidelity	labeled	output	of	DNS	simulations	with	
prior	knowledge	on	the	mathematical	representation	
of	the	RANS	model.	In	general,	tuning	coefficients	can	
increase	 the	 accuracy	 of	 CFD	 predictions,	 but	 the	
value	of	the	coefficients	of	the	turbulence	models	are	
problem	 related,	 with	 scarce	 generalizability.	
Furthermore	 without	 proper	 caution,	 tuning	
coefficient	techniques	could	actually	introduce	more	
uncertainties	 to	 the	 analysis,	 	 compensating	 for	

example	 for	 experimental	 errors,	 inaccurate	
boundary	 conditions,	 etc.	 Physics	 informed	 deep	
learning	modeling	can	help	to	contain	this	problem	
and	 increase	 generalizability	 so	 that	 the	 same	
architecture	can	be	applied	to	different	flow	fields.	

Fig.3	-	TBNN	architecture	used	by	Ling	et	al.	[37].	It	
presents	a	further	input	layer	called	Tensor	input	
layer,	which	makes	sure	that	the	ANN	embeds	the	
physical	property	of	rotational	invariance.	

Deep	 learning	algorithm	can	actually	achieve	much	
more	 when	 interacting	 with	 turbulence	 modeling.	
Research	 is	 focusing	 on	 new	 ways	 of	 enhancing	
turbulence	models	by	acting	directly	to	the	source	of	
uncertainties.	 An	 idea	 is	 to	 use	 deep	 learning	
algorithm	 to	 build	 a	 representation	 of	 turbulence	
modeling	closure	terms.	Tracey	et	al.	[29]	take	a	one-
equation	turbulence	model	and	try	to	reproduce	the	
same	 results	 by	 replacing	 its	 source	 term	 of	 the	
model	with	a	classic	shallow	MLP.	They	established	a	
methodology	 for	 future	 studies	where	 the	 training	
data	 becomes	more	 accurate	DNS	 or	well	 resolved	
LES	 simulations.	 The	 enhanced	 model	 in	 practice	
learns	 the	behavior	of	 turbulence	 leading	 to	better	
prediction	over	a	wider	range	of	flows.	In	2016,	Ling	
et	 al.	 [30],	 for	 instance,	 explore	 the	 opportunity	 of	
using	 DNS	 data	 as	 labeled	 output,	 which	 accuracy	
tops	RANS’s.	They	act	directly	on	the	eddy-viscosity	
hypothesis,	 substituting	 it	with	an	ANN	model.	The	
ANN	used	is	a	very	deep	architecture	of	more	than	10	
hidden	layers,	an	advanced	alternative	to	MLP,	called	
Tensor	 Basis	 Neural	 Network	 (TBNN),	 shown	 in	
Figure	3.	This	custom	deep	architecture	makes	use	of	
a	 tensor	 basis	 set	 to	 impose	within	 the	 ANN	 prior	
physical	knowledge	about	fluid	flows.	In	particular,	it	
embeds	symmetry	and	physical	property	of	Galilean-
rotational	 invariance,	 which	 is	 ultimately	
fundamental	for	accuracy	of	the	CFD	solution.	Similar	
applications	 focusing	 on	 augmenting	 turbulence	
modeling	is	for	instance	the	work	of	Geneva	et	al.	[31]	
using	 the	 same	TBNN	 architecture	 from	Ling	 et	 al.	
[30] coupled	with	Bayesian	statistics.	Deep	learning
can	even	reveal	new	hidden	correlations	where	the
physical	 laws	are	still	not	known	a	priori.	A	perfect
example	of	this	interaction	is	given	by	Font	et	al.	[32]
for	 turbulent	 flow	 analysis.	 They	 make	 use	 of	 a
remarkable	custom	architecture,	being	an	advanced
deep	 Multiple	 Input-Multiple	 Output	 CNN	 (MIMO-
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CNN).	 Overall,	 turbulence	 model	 enhancement	
techniques	 allow	 for	 impressive	 accuracy	
improvements,	and	perhaps	most	 importantly	even	
the	 discoveries	 of	 new	 equations	 and	 correlations	
about	 turbulence	phenomena	that	were	not	known	
before.	

4.2 Surrogate modeling 

As	 shown	 in	 section	 3	 for	 the	 built	 environment,	
ANNs	can	also	be	used	to	marginally	or	completely	
substitute	 CFD	 simulations	 in	 the	 analysis	 of	 fluid	
flows.	 In	 general,	 computational	 efficiency	 of	
reduced	 order	 based	 methods	 can	 be	 1-2	 orders	
higher	compared	to	conventional	CFD	methods	[33],	
even	allowing	real-time	prediction	in	some	cases.	For	
example,	Guo	et	al.	[34]	develop	a	CNN	algorithm	that	
performs	 at	 least	 two	 orders	 of	 magnitude	 faster	
than	 equivalent	 CFD	 solution	 with	 slightly	 less	
accurate	solution.	Fukami	et	al.	[35]	instead	analyze	
the	 feasibility	 of	 five	 different	 deep	 learning	
architecture	 for	 aerodynamic	 design	 predictions	 in	
three	 different	 regression	 problems,	 including	 the	
estimation	of	force	coefficients	of	wake	flows.	Sensor	
measurements	were	used	as	 labeled	output	 for	 the	
network	training.	The	multiple	works	done	primarily	
by	 Guastoni	 et	 al.	 [36,37],	 apply	 deep	 learning	
models	 to	 an	 open	 channel	 extremely	 expensively	
boundary	 layer	 DNS	 simulation.	 It	 is	 one	 clear	
example	of	the	computational	efficiency	advantage	of	
data	driven	models	surrogate	over	brutal	numerical	
simulations.	In	the	next	sections	applications	of	two	
methods	 that	 are	 conceptually	 similar	 to	 simple	
surrogate	 modeling	 will	 be	 reviewed:	 POD,	 and	
super-resolution.	

4.3 POD 

Already	in	2002,	Milano	et	al.	[38]	was	modeling	near	
wall	 turbulent	 flows	with	POD.	POD	belongs	 to	 the	
branch	of	order	reduction	models	and	decomposes	a	
physical	 field	 into	 a	 basis	 along	 the	 principal	
component	 analyses,	 allowing	 for	 example	 to	
quantify	 the	 structure	 of	 turbulence	 through	
recognized	 basic	 patterns	 [39].	 The	 limitations	
raised	by	POD	resided	in	the	inherent	linearity	of	the	
mode	 decomposition.	 Milano	 et	 al.	 [38]	 showed	
ANNs	 can	 actually	 be	 viewed	 as	 generalization	 of	
POD,	 but	 with	 improved	 architecture	 consisting	 of	
non-linear	 layers	 that	 eliminates	 the	 linear	
limitations	of	 POD.	 Since	 the	work	by	Milano	 et	 al.	
[38],	 the	 development	 of	 model	 order	 reduction	
using	POD	with	ANNs	has	been	uninterrupted.	Fresca	
et	 al.	 [40]	 develop	 a	 strategy	 to	 make	 the	 offline	
training	 dramatically	 faster	 by	 performing	 a	 prior	
dimensionality	 reduction	 through	 POD	 and	 a	 pre-
training	stage	where	different	models	are	combined	
to	 initialize	 the	 parameters	 of	 the	 algorithm.	
Improved	 ANNs	 architectures	 have	 also	 been	
researched	 over	 the	 years.	 For	 example,	 in	 2018	
Wang	et	al.	[41]		applies	the	LSTM-RNN	architecture	
with	POD	techniques	in	the	study	of	ocean	currents	
and	 flow	 around	 cylinder.	 POD	 deep	 learning	
techniques	are	eventually	an	interesting	and	efficient	
form	 of	 order	 reduction	 modeling,	 which	 allows	

much	 faster	 predictions	 while	 maintaining	
reasonable	accuracy	[41].	

4.4 Super-resolution 

Borrowed	 from	 computer	 vision	 and	 image	
recognition,	 super-resolution	 imaging	 refers	 to	 the	
class	 of	 techniques	 that	 aims	 at	 obtaining	 a	 high-
resolution	 image	 output	 from	 a	 low-resolution	
image.	 Deep	 learning	 has	 already	 been	 extensively	
used	for	super-resolution	and	lately	mainly	through	
CNNs	 [42],	 given	 their	 predisposition	 for	 visual	
pattern	 recognition.	 The	 same	 concept	 could	 be	
applied	 to	 flow	 fields	 by	 treating	 them	 as	 images.	
Using	an	offline	database	of	high-resolution	snapshot	
of	 flow	 field	 (for	 example	 DNS	 data)	 as	 labeled	
output,	it	is	possible	to	give	input	from	low	resolution	
data	 either	 from	 experimental	 measurements	 as	
done	 by	 Erichson	 et	 al.	 [43]	 or	 from	 fast	 and	
computationally	 inexpensive	 simulation.	 The	
method	 consequently	 reconstructs	 the	 turbulent	
field	 to	 high	 resolution	 with	 the	 ANN.	 More	
specifically,	Erichson	et	al.	[43]	first	reconstruct	a	2D	
cylinder	 with	 10	 sensors	 and	 getting	 DNS	 data	 as	
high	resolution	output	and	subsequently	also	apply	
the	 same	 architecture	 to	 the	 study	 of	 isotropic	
turbulence.	 Fukami	 et	 al.	 [14,44]	 take	 DNS	 high-
resolution	data	and	purposely	down-scale	them	with	
a	 pooling	 operation	 to	 obtain	 the	 low-resolution	
input	 data.	 Using	 two	 different	 neural	 network	
architecture,	 one	 a	 classic	 CNN	 and	 another	
improved	hybrid	ANN	algorithm	that	can	handle	the	
multi-scale	nature	of	the	flow,	Fukami	et	al.	[14,44]	
successfully	 reconstruct	 the	 same	 cylinder	wake	of	
Erichson	et	al.	 [43]	and	even	2D	decaying	 isotropic	
turbulence.	 In	 all	 these	 cases,	 the	 model	 super-
resolves	 the	 low-resolution	 field	without	 assuming	
any	 a	 priori	 knowledge	 of	 the	 physics,	 which	
demonstrate	 the	 strength	 of	 data-driven	 super-
resolution	techniques.	At	 the	same	time,	 the	super-
resolution	 opens	 the	 possibility	 to	 incorporate	 the	
knowledge	of	 the	physics	 into	 the	 learning	process	
for	 improved	 accuracy	 in	 future	 studies.	 Gao	 et	 al.	
[45]	develop	a	physics-informed	deep	learning	based
super	resolution	solution	using	a	CNN.	The	aim	of	a
physics-informed	algorithm	is	to	guarantee	that	the
super-resolved	fields	are	faithful	to	the	physical	laws
and	 principles.	 As	 shown,	 super-resolution
techniques	eventually	offer	a	new	and	efficient	way
to	 study	 turbulent	 flows,	 with	 enormous	 potential
especially	when	coupled	with	CNNs.

5. Opportunities and challenges in
the built environment

Most	 RANS	 turbulence	 models	 are	 designed	 for	
aeronautics	applications	with	high	speed	flow,	while	
built	 environment	 simulations	 usually	 present	 low	
velocity	 fields.	 The	 standard	 coefficients	 of	 the	
models	might	be	inadequate	in	various	scenarios	as	
highlighted	by	Yarlanki	et	al.	[27].	Tuning	coefficients	
with	 the	 use	 of	 ANNs	 is	 a	 practical	 scope	 that	 can	
already	decrease	 error	 in	 quantities	 of	 interest.	 By	
acting	on	augmenting	the	turbulence	models,	further	
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substantial	accuracy	improvements	can	be	reached.	
However,	 the	 computational	 efficiency	 in	 built	
environment	 design	 problems	 still	 needs	 to	 be	
addressed.	 Coupled	 deep	 learning	 CFD	 might	 be	
unfeasible	 for	 some	 applications,	 especially	 when	
fast	predictions	are	needed,	such	as	in	control,	design	
or	optimization	tasks.	On	the	other	hand,	surrogate	
modeling	inevitably	allows	faster	computations,	but	
the	predictions	quality	is	usually	affected.	Surrogate	
modeling	 is	also	able	 to	obtain	 results	without	any	
prior	physical	knowledge	about	the	problem,	thanks	
to	 a	 large	 amount	 of	 training	 data.	 This	 is	
advantageous	in	some	respects,	as	it	is	not	required	
previous	 deep	 physical	 knowledge	 and	 experience	
on	the	problem,	but	it	can	be	problematic	in	others.	
For	example,	without	prior	physical	knowledge,	the	
trained	 ANN	 could	 provide	 adequate	 level	 of	
accuracy	on	the	variables	trained,	but	critically	non-
physical	results	overall.	Physics	 informed	modeling	
is	 another	 possible	 step	 into	 higher	 quality	
predictions,	 which	 could	 also	 increase	 the	
generalizability	of	the	model.	About	the	direction	of	
turbulence	modeling	research,	Duraisamy	et	al.	[46]	
note	 that	 one	 should	 not	 throw	 away	 the	 existing	
knowledgebase	 in	 turbulence	 modeling	 but	 rather	
build	on	top	of	it.	Some	modeling	base	concepts,	such	
as	 dimensional	 analysis	 and	 Galilean	 invariance	 in	
turbulence	modeling	should	be	preserved	in	the	deep	
learning	 architecture.	 Numerous	 physics	 informed	
modeling	have	been	reviewed	in	section	4.	With	the	
availability	 of	 large	 amount	 of	 data,	 deep	 learning	
models	are	also	capable	to	find	hidden	correlations	
or	 equations	 that	were	 unknown	 [46].	 This	 can	 be	
extremely	 important	 since	 human	 preconception	
and	knowledge	can	harm	new	discoveries	instead	of	
helping	achieve	them.	For	example,	forcing	to	fit	deep	
learning	models	from	RANS	models	when	the	closure	
is	renowned	to	fail	in	multiple	cases	will	certainly	not	
allow	 great	 performance	 improvements.	 Instead,	
data	driven	models	might	even	bypass	the	traditional	
ways	 of	 hypothesis-driven	 model	 creation	 and	
instead	generate	models	 free	 from	human	intuition	
[46].	A	similar	philosophy	could	also	be	applied	in	the	
built	environment.	The	accuracy	of	simple	surrogate	
modeling	and	coefficient	tuning	is	highly	dependent	
on	the	training	procedure.		The	corresponding	ANNs	
show	the	highest	struggle	in	adapting	to	cases	where	
the	 ANN	 was	 not	 trained	 for,	 even	 for	 simple	
variables	changes	as	seen	in	the	work	by	Tanaka	et	
al.	[12].		Super-resolution	and	POD	are	in	general	less	
sensitive	in	this	regard,	but	they	still	require	a	large	
training	 data	 set	 to	 achieve	 good	 accuracy.	
Turbulence	model	 augmentations	provide	a	 tool	 to	
overcome	 the	 limitations	 of	 standard	 turbulence	
models	 and	 they	 should	 provide	 the	 highest	
generalizability	 and	 robustness	 in	 applications	 to	
different	 flow	 scenarios.	 Finally,	 the	 addition	 of	
physical	 information	 with	 physics	 informed	
modeling	 can	 definitely	 help	 in	 improving	 overall	
performance	of	deep	learning.	

It	 is	 important	 to	notice	 that	 the	power	of	ANNs	 in	
specific	 tasks	 reside	 almost	 completely	 in	 their	
capacity	to	interpolate	the	data.	The	performance	on	

the	test	set	will	be	adequate	if	the	test	and	training	
set	are	under	similar	distribution.	A	big	challenge	for	
deep	 learning	 instead	 resides	 in	 the	 extrapolation	
process,	 where	 ANN	 can	 fail	 even	 in	 simple	 cases	
[43].	 One	 obvious	 example	 of	 extrapolation	 task	 is	
when	the	data	has	the	form	of	a	time	sequence	and	
the	 objective	 of	 the	 deep	 learning	 algorithm	 is	 to	
inference	 about	 future	 predictions,	 given	 historical	
data	as	training	data	(crucial	in	climate	modeling	for	
instance).	 The	 deep	 learning	 model	 fails	 in	
extrapolating	 the	 fields	which	belong	 to	a	different	
statistical	 distribution.	 Therefore,	 for	 transient	
indoor/outdoor	 airflow,	 the	 application	 of	 super-
resolution	 requires	 further	 investigation.	 Directly	
linked	to	interpolation	ability	is	the	renowned	ANN	
hunger	 for	 large	 dataset.	 In	 computer	 vision	 tasks,	
the	 available	 training	 data	 are	 usually	 massive.	 In	
fluid	mechanics,	the	availability	of	data	is	still	limited,	
despite	 various	 efforts	 in	 the	 latest	 years	 to	 create	
fluid	 mechanics	 databases	 of	 simulations.	 The	
research	community	is	still	not	used	to	consistently	
work	 with	 open	 and	 large	 shared	 databases	 and	
often	prefer	to	generate	simulation	data	themselves,	
especially	in	the	built	environment,	which	eventually	
harm	the	development	of	better	data	driven	models.	
Besides,	 the	 scarce	 availability	 of	 large	data	makes	
the	 classic	 over-fitting	 problem	 during	 the	 ANN	
training	procedure	even	more	relevant.	

6. Conclusions
Thanks	 to	 digitization,	 new	 data	 driven	 tools	 are	
starting	 to	 make	 an	 impact	 in	 engineering	
applications	 as	 CFD	 simulations	 in	 the	 built	
environment.	 The	 objective	 of	 this	 study	 is	 to	
perform	a	comprehensive	review	of	the	current	state	
of	 the	art	of	 the	 interaction	between	deep	 learning	
models	and	 fluid	mechanics	simulations,	update	on	
the	 state	 of	 the	 built	 environment	 research	 in	 the	
topic,	 and	 propose	 possible	 advancements	 in	 the	
field.	 The	 vast	 majority	 of	 applications	 in	 fluid	
mechanics	analysis	in	the	built	environment	involves	
deep	 learning	 as	 surrogate	 modeling	 for	 faster	
predictions,	 justified	 by	 the	 expensiveness	 of	 CFD	
simulations.	Most	 often,	 fast	 predictions	 come	 at	 a	
cost	of	degraded	accuracy.	Fluid	mechanics	research	
and	 applications	 in	 general	 offer	 inspiration	 for	
possible	different	interaction	which	could	benefit	not	
only	 prediction	 speed	 but	 also	 accuracy	
performance.	 Above	 all,	 physics	 informed	 deep	
learning	modeling,	 turbulence	model	 enhancement	
with	 different	 techniques,	 and	 super-resolution	
techniques	are	the	most	promising	methods	that	are	
largely	yet	to	be	explored	in	the	built	environment,	
for	 both	 indoor	 and	 outdoor	 simulations.	
Unfortunately,	 together	 with	 promising	
advancements,	 deep	 learning	 methods	 come	 with	
challenges	 to	 overcome,	 such	 as	 the	 availability	 of	
consistent	 large	 flow	 databases,	 the	 extrapolation	
task	problem,	over-fitting	and	others.		
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