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Abstract. Plate heat exchangers (PHE) used in combi-boilers are continuously affected by small 

particles, both from the heating circuit and other components of the heating system. These 

particles can accumulate in the heat exchanger and create clogging that affect the performance of 

the heat exchanger over time by generating a insulating layer. To avoid unexpected blockage and 

other kinds of mechanical failure caused by unintended particles that originate from the pipeline 

and other components, it is crucial to design an effective predictive maintenance system for PHE 

used in the combi-boiler. In this study, the early stage of blockage in a PHE is investigated 

experimentally to minimize the field failure rate. The data is acquired from an experimental set-

up in which just the PHEs are tested. The PHEs with the same plate pattern and different plate 

numbers are tested using varied flow rate and inlet temperatures as parameters. The overall heat 

transfer coefficient and fouling resistance are calculated to associate with the functionality of 

PHE. A comparison study of multi-classification algorithms has been investigated to present an 

algorithm which gives the most accurate model trained by experimental data. K-folds cross 

validation are studied using Naïve Bayes, k-nearest neighbours (kNN) and decision tree machine 

learning algorithms. As a result, the behaviour of overall heat transfer coefficient and fouling 

resistance in normalized time scale show the expected trends. The attempted models of machine 

learning algorithms result in Naïve Bayes predicting the classes of test data perfectly and it is 

followed by decision tree algorithm with an accuracy of 99.3% and kNN algorithm with 96.3%. 

Keywords. Fouling, plate heat exchanger, machine learning, classification, Naïve Bayes, k-
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1. Introduction

Fouling is the process of continuous accumulation of 
deposited undesirable particles on heat transfer 
surface areas (1). In heating appliances, such as 
combi-boilers, a plate heat exchanger (PHE) is 
essential in heating up domestic water to the desired 
temperature. The primary heat exchanger provides 
heat transfer by combusting fuel (e.g natural gas) to 
central heating (CH) water which is used to transfer 
heat to the domestic water via PHE, which consists of 
two channels that guide two immiscible fluids, CH 
and domestic water. Both sides of the PHE are 
affected by dirt accumulation from the system 
components. In addition, domestic water channel of 
the PHE is also affected by calcification due to 
calcium compounds in sanitary water. Crystallization 
and calcification are investigated by Lee et al. (2) and 

Pääkkönen et al. (3,4) The CH side of the PHE is 
mostly affected by the particles coming from system 
components such as the primary heat exchanger. Due 
to continuous interaction with water, corrosion 
occurs on the surface of the aluminium primary heat 
exchanger. The corrosion of primary heat exchanger 
and particles from the pipe systems cause particulate 
type fouling on this side of the plates. The main 
particle that is seen, although in small amounts, is 
AI2O3, along with other calcium compounds. There 
are several published experimental and numerical 
investigations into particulate and composite 
fouling. (5–8) 

In recent years, one of the trending research topics  
centered around fouling prevention is modelling and 
prediction algorithms. These algorithms have mostly 
been based on statistical methods and machine 
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learning techniques and include fouling prediction 
and detection algorithms based on support vector 
machines (SVM) (9,10), auto-associative kernel 
regression (AAKR) (11), autoregressive integrated 
moving average (ARIMA) (12) and artificial neural 
networks (ANN) (13–17). Model-based fouling 
prediction research have also been investigated by 
Kalman filter usage (18).  

The predictive maintenance approach has also been 
looked at with an algorithm to predict fouling 
behaviour. The predictive maintenance techniques 
are designed based on mainly fault diagnostics using 
data analysis. The purpose of this algorithm 
determines the presence of anomalies and fault 
diagnostics generally focus on statistical approaches 
that provide classification and clustering. Most 
failure mechanisms can be associated with the 
degradation processes (19). The data acquisition 
process can be maintained by health system 
monitoring as in Ref. (20). The machine learning 
algorithms used for classification are Naïve Bayes, k-
nearest neighbours (kNN), decision trees, random 
forests. In the Ref. (21) these algorithms are 
successfully studied to classify the faults of boilers by 
using simulated data. As a result, decision tree 
algorithm gave the best result with an accuracy of 
97.8%. As can be seen from references, the machine 
learning techniques are generally used in HVAC 
industry especially in heat exchangers but when the 
open resources are considered the classification 
machine learning algorithms on PHEs have been 
investigated rarely ever. 

In this study, a multi-classification study to 
determine fouling levels with the aim of generating a 
warning on combi-boiler appliances is carried out for 
compact brazed plate heat exchangers. The Naïve 
Bayes, kNN and decision tree machine learning 
algorithms are studied with cross-validation method 
for experimentally acquired data. A comparison of 
multi-classification machine learning algorithms, 
which are applied for detecting the fouling level of 
PHEs in the combi-boiler appliances, is provided as 
an introductory study. 

2. Research methods

2.1 Experimental conditions 

Algorithm development process starts with data 
acquiring regarding to get healthy and faulty 
conditions. To get a dataset for both conditions, just 
PHEs are tested. Two PHEs one having 30 and the 
other 32 plates are considered to examine the  
clogging status. Each PHE is designed for a specific 
combi-boiler heating capacity and dynamic system 
behaviour. The technical specifications that are 
generated from the design parameters, includes the 
working range information of CH and domestic water 
channel of PHEs. Specifications indicate that for the 
given inlet temperatures and flow rates, the outlet 
temperatures and flow rates of the PHE should be in 
the desired range. Investigated PHEs are already 

meeting these specifications therefore they are 
considered as the reference and their performance is 
considered as zero-hour performance.  

The tests are conducted in the flow rates shown in 
Table 1. The domestic water inlet temperatures, i.e., 
domestic cold water (DCW), are kept constant as 
10°C. The CH inlet temperatures are applied in a 
range of 72±1°C. The first conditions of both PHEs 
represent the technical specifications of 30 and 32 
plates. Therefore, the results with respect to first test 
conditions are considered as the initial status (at t0) 
of fouling process. Other test conditions are the 
technical specifications of PHEs with 28, 26, 24, 22, 
20, 18 and 16 plates, respectively. By performing this 
test procedure, it is assumed that the effect of fouling 
on the performance of PHE is the same as the effect 
that would occur if the PHE with fewer plates was 
used instead of the designed one. Thus, a 
representation of the clogging behavior has been 
demonstrated. 50% clogged PHE as maximum 
clogging percentage is considered in test condition 8 
(Tab. 1), technical specifications of 16 plate PHE that 
are implied to 32 plate PHE.   

Tab. 1 – Experimental conditions applied to 
demonstrate the clogging behaviour of the PHEs. 

32 Plates 30 Plates 

CH Flow 
Rate 

(l/min) 

DHW Flow 
Rate 

(l/min) 

CH Flow 
Rate 

(l/min) 

DHW Flow 
Rate 

(l/min) 

Test 1 29 18 26 10.3 

Test 2 26 10.3 25.1 10.1 

Test 3 25.1 10.1 21.5 8.5 

Test 4 21.5 8.5 21.5 8.7 

Test 5 21.5 8.7 17 6.9 

Test 6 17 6.9 17.2 6.9 

Test 7 17.2 6.9 17.6 6.9 

Test 8 17.6 6.9 

2.2 Experimental set-up 

The experimental setup contains two lines that 
represent CH (orange line) and DHW (green line) 
circuits (Fig.1). CH line is a closed circuit, and the 
demand of hot water is met with a combi-boiler. CH 
water is supplied from a tank, which is heated by the 
combi-boiler’s system circuit with a heater coil. The 
static pressure of the closed circuit is 2 ± 0.1 bar 
which is measured inside the tank. A pump circulates 
water through the closed circuit. A flow control valve 
is located on the CH line, together with the pump that 
can be controlled manually to adjust the required 
flow rates. On the CH circuit, there is a bypass line 
that is used for heating the water without preheating 
the  PHE.  CH  line  is  interacted  with  a  cold- water  
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Fig. 1 – Schematic diagram of experiment set-up and its components

line to achieve the ability of necessary cooling with 
an additional plate heat exchanger. This cooling 
process control is carried out manually with the help 
of a flow control valve that is located on the cold-
water line.  

DHW line is supplied from a main chiller unit. The 
required flow rates are provided by a flow control 
valve manually. There are temperature sensors to 
measure the temperature of water at the inlets and 
outlets of the tested PHE beside the other important 
points such as tank inlet and outlet. The sensor 
locations can also be seen in Fig. 1. Flow sensors are 
located on both lines to measure the volume flow 
rate. Two differential pressure meters are placed to 
measure the pressure drop over the inlets and 
outlets of the tested PHE.  

2.3 Data processing 

The main effect of fouling in the PHEs is functional 
performance decreasing. The accumulated fouling 
particles creates a film layer on the plates, which 
pretends   like   an   insulation  layer   that  results  in 

degression of heat transfer. This film layer can be 
represented as fouling resistance regarding to the 
thermal resistance concept. The logarithmic mean 
temperature difference (LMTD) method is used to 
calculate overall heat transfer coefficient (U) 
(Equation. (1)). Heat transfer rates of DHW and CH 
side are calculated by equation (2) and (3). The 
material properties are taken at the average 
temperatures of the inlets and outlets for both fluids. 
The total heat transfer rate is determined by taking 
th average of the heat transfer rates of CH and DHW 
sides. This overall heat transfer coefficient 
calculation method is also implied successfully by 
Zhang et al. (6).  

𝑄̇𝑡𝑜𝑡𝑎𝑙 = 𝑈 ∙ 𝐴 ∙ 𝐿𝑀𝑇𝐷        (1) 

𝑄̇𝑖 = 𝑚̇𝑖𝑐𝑝,𝑖∆𝑇𝑖    (2)  

𝑄̇𝑗 = 𝑚̇𝑗𝑐𝑝,𝑗∆𝑇𝑗         (3) 

𝑈 = 𝑅𝑖 + 𝑅𝑤𝑎𝑙𝑙 + 𝑅𝑗 + 𝑅𝑓  (4) 

Here, 𝑄̇ denotes heat transfer rate. DHW and CH are 
indicated as i and j, respectively. Specific heat is 
indicated  as  cp,  mass  flow  rate  is  𝑚̇,  temperature 

Fig. 2 – Zone categorization. 
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difference is ∆T. A denotes the heat transfer area. 
Fouling resistance (Rf) is obtained from equation (4), 
where 𝑅𝑖  and 𝑅𝑗  denote the convective thermal 

resistances of the DHW and CH sides, respectively. 
They are obtained from the CFD simulations 
generated by using the test conditions as boundary 
conditions. Rwall denotes conduction heat resistance 
which is neglected in this study. 

2.4 Classification method 

The used main algorithm development method is 
fault diagnosis to obtain the current fouling status of 
the PHE. There are several machine learning 
techniques that can be applied to diagnose faults and 
current situations. Classification, which is implied in 
this study, is a type of supervised machine learning 
in which an algorithm learns to classify the new data. 
The training data, from the experimental results is 
used in an algorithm to teach the zones to be 
predicted. The zones that are the fault labels (1 to 8) 
of the algorithm, represent the test conditions. 
Experimental conditions and measured parameters 
are predictors, while the zones are categorized 
responses in the classifier algorithm. While the 
deviation from 0-hour performance, initial status, is 
increasing, the deterioration of PHE will be increased 
also as expected. Zones represent the comfort loss 
and cost increase levels till the required maintenance 
time comes and finally when the PHE is required to 
be changed. (Fig. 2)  

As there are more than one classes to be predicted, 
multi classification algorithms are used. Naïve Bayes, 
kNN (k-nearest neighbours) and decision tree 
algorithms are chosen due to their applicability to 

Fig. 3 – k-fold cross validation designation. 

multi classification cases. The algorithms are applied 
to data using Classification Learner App in MATLAB. 
Before training of the algorithms, cross-validation is 
used in the process of creation the testing and 
training data. Cross-validation is a model assessment 
technique used to evaluate the algorithm’s 
performance. Basically, this offers several techniques 
that split the data differently to be protected against 
overfitting. The k-fold cross-validation technique, 
which is used, partitions data into k randomly chosen 
subsets (or folds) of roughly equal in size as 
described in Fig. 3. One subset is used to validate the 
model that is trained using the remaining subsets 
(22). The average error across all k partitions is 
chosen to determine overall accuracy percentage. 
The k value is chosen as 5 in this study for all used 
algorithms. 

Naïve Bayes is a classification algorithm that applies 

Fig. 4 - The performance trends for 32 and 30 plates a) DHW temperature behaviour b) CH outlet temperature behaviour 
c) Pressure drop behaviour of DHW d) Pressure drop behaviour of CH. 
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Fig. 5 – Fouling resistance and overall heat transfer 
coefficient behaviours a) for 32 plates b) for 30 plates. 

density estimation to the data. The algorithm uses 
Bayes theorem, and assumes that the predictors are 
conditionally independent, given the class. Naive 
Bayes classifiers assign observations to the most 
probable class (23). Kernel distribution is used as a 
numerical predictor where the kernel width is 
automatically determined using an underlying fitting 
function via MATLAB (24).  

Given data for n number of points and a distance 
function, k-nearest neighbours (kNN) algorithm 
finds the k closest points in data (25). 

Number of nearest neighbours (k) to find for 
classifying each point when predicting, specified as 
10 in this study while Euclidean distance is implied 
as a default in MATLAB Classification learner 
application. Decision trees create a hierarchical 
partitioning of the data, which relates the different 
partitions at the leaf level to the different classes 
(26). The hierarchical partitioning at each level is 
created using a split criterion. The Gini’s diversity 
index is chosen as split criterion in this study while 
the maximum number of splits is implied as 100. 

3. Results and discussion

The experimental results are processed as grouped 
to be predicted. The outlet temperatures of PHE and 
the differential pressure between inlets and outlets 
of the PHE of both CH and DHW lines are presented 
in scatter plot for 30 and 32 plates (Fig. 4). The 
results are presented in normalized time scale, here 
the normalized time axis represents the zones since 
they stand for the degradation of PHE from zone 0 to 
8, respectively.  

Since clogging of plates results in performance 
decrease in PHEs, trends of the DHW outlet 
temperature for both 30 and 32 plates decrease as 
shown in Fig. 4. In contrast, trends of the CH outlet 
temperature and the pressure drops of both CH and 
DHW lines for 30 and 32 plates increase as shown in 
Fig. 4. The calculated overall heat transfer 
coefficients for both 30 and 32 plates are shown in 
Fig. 5. The trends of overall heat transfer coefficient 
are decreasing as an expected statement of the 
decreasing performance.  

The fouling resistance values also follow the 
expected trends in contrast to the overall heat 
transfer coefficient as shown in Fig. 5. In addition to 
that, the fouling resistance graphs show similar 
trends for particulate and composite fouling 
behaviours of four PHEs having different geometries 
studied by Zhang et al. (6). 

Fig. 6 – Confusion matrices of a) decision tree model b) kNN model. 
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Fig. 7 – Parallel coordinates plot of experiment data shown in standard deviation scales for Naïve Bayes model.

The PHE indicated as 1st in reference study has 
similar geometric parameters with the ones used in 
this study. The Reynolds number range designated in 
the reference study is similar to the range in this 
study. As a result, trends of the calculated fouling 
resistance can be considered as a realistic 
representation of the fouling behaviour with the help 
of the experimental method implied in this study.  

The confusion matrices of the decision tree and kNN 
algorithms as the results of the predicted 
performances of the trained models are shown in Fig. 
6. Naïve Bayes is predicted the response classes
perfectly with 100% accuracy. As the decision tree
algorithm can predict fouling with an accuracy of
99.2%, it is followed by kNN algorithm with 96.7% 
accuracy. The true positive rates (TPR) and false
negative rates (FNR) are designated in confusion
matrices with the prediction accuracies portioned by 
classes. The standard deviation of the imported data
can be seen in the parallel coordinates plot for Naïve 
Bayes trained model in Fig. 7. In the figure, the
classes show more distinguishable distribution on
the CH and DHW pressure difference data rather 
than CH inlet and DCW temperatures. This results in
that the pressure difference is more convenient
parameters to predict classes correctly rather than 
the other parameters. The DHW and CH outlet
temperature data are also helpful to distinguish the
classes according to the distribution shown in
parallel coordinate plot (Fig. 7). With this
representation of high dimensional experiment data
as 2-dimensional visualization, the relation of
standard deviation between the predictors can be 
seen.

4. Conclusion

In this study, an algorithm is developed to imply on 
combi-boiler appliances with the aim of generating a 
warning that indicates the fouling level of PHEs. 

Naïve Bayes, kNN and decision tree are used as the 
multi-classification machine learning algorithms.  

The data is acquired from an experiment set-up for 
PHEs having 32 and 30 plates are tested. The 
experimental conditions are selected as the technical 
specifications of the PHEs. The experimental data is 
grouped by zones representing the fouling levels of 
PHE. During creation of zones, it is assumed that the 
effect of fouling on the performance of PHE is the 
same as the effect that would occur if the PHE with 
fewer plates was used instead of the designed. The 
behaviours of the overall heat transfer coefficient 
and the fouling resistance in normalized time scale 
show the expected trends. The attempted models of 
machine learning algorithms result in that Naïve 
Bayes has better accuracy compared to other models 
and it is followed by decision tree algorithm with an 
accuracy of 99.2% and kNN algorithm with 96.7% 
prediction accuracy. The results of trained models 
with tested data are shown in confusion matrices. 
The standard deviation of the data can be 
represented in parallel coordinates plot which 
results in the pressure drop values being seen to 
have the best distinguishing feature among the 
predictors. 

Overall, this study demonstrates the possibility to 
generate a warning for current fouling level 
classification of PHEs in combi-boiler appliances by 
implying machine learning algorithms with high 
accuracy. Generation of fouling level warning results 
in the possibility to release a feature that can be the 
major effect of cost saving by retrenching on 
maintenance.  

The framework of this study can be refined by taking 
time-dependent dataset into account to assess 
optimum time schedule of maintenance in future 
studies. 
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