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Abstract. In the current energy transition, Renewable Energy Sources are identified as key 

enablers for the achievement of the ambitious European target of climate neutrality by 2050; 

among them, solar and wind energy play a crucial role. The evolution of production, storage and 

end users’ technologies goes hand in hand with the rapid development of the information sector, 

where High Performance Computing (HPC) infrastructures allow the exploitation of Internet of 

Things devices and Artificial Intelligence techniques. The use of HPCs in the energy field enables 

the use, processing and sharing of large volumes of energy data. The funded by the CEF TELECOM 

2018 DYDAS (Dynamic Data Analytics Services) Project is carried out in the above-mentioned 

framework, aiming to create a collaborative platform, called DYDAS, that, using high-performing 

computers, will offer data, algorithms and data analysis services to a wide range of final users, 

both private and public. More specifically the paper will focus on the Use Case Energy, whose 

objective is to test and validate the DYDAS platform, by exploiting meteorological forecast 

techniques and using satellite information to facilitate and boost up the assessment of both 

energy demand and power production. Considering the strong dependency on resource 

availability, the localization of the resources and the related infrastructure is essential for an 

efficient and strategic energy planning. Therefore, the mix of traditional algorithms, climatic 

variables and remote sensing techniques represents an added value for supporting decision-

makers in the energy planning processes at local and national scales, taking advantage of the 

geomatics instruments to visualize and monitor decision strategies. Given the role of electricity 

in the energy transition, the current paper deepens the Use Case Energy focusing on power 

generation from photovoltaic plants and on-shore and off-shore wind farms located in Italy. The 

aim of the use case is to estimate the potential local power production, by collecting information 

about technical features and geo-localization of real plants, and integrating them with 

georeferenced climatic variables, which can influence the electricity production (e.g., air 

temperature, solar irradiance, etc.).  
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1. Introduction

In order to effectively tackle climate changes and 
speed up the energy transition process towards the 
1.5°C goal as a limit for global temperature rising 
[1],[2], strong effort must be devoted to the efficient 
deployment of Renewable Energy Sources (RES). In 
particular, among the proposed solutions to achieve 

the target of a net zero energy system by 2050 [3], 
more than 90% concerns renewable energy [4]. 
Therefore, how to develop a strategic and efficient 
renewable planning process becomes a crucial step. 
According to this, the exploitation of geo-referenced 
data to assess geo-informed interventions plays an 
essential role, considering that different areas can do 
things differently, and thus understanding that the 
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energy transition is a geographically-constituted 
process [5]. To this end, the integration of different 
instruments able to combine a large volume of 
heterogeneous data and to extract valuable 
information can be exploited; in particular, using 
advanced Internet of Things (IoT) devices and 
Artificial Intelligence (AI) techniques. In this context, 
the DYDAS European project comes out to combine 
these aspects.  In detail, DYDAS is a project funded by 
the CEF Telecom 2018 work program with the aim of 
contributing to the European data infrastructure by 
offering data, algorithms, processing and analysis 
services to different public and private user 
communities. The project is carried out by a 
consortium led by K2 Business partnering with 
ENEA, LINKS Foundation, Gmatics and ANCI Lazio. 
The platform DYDAS has been conceived as a 
marketplace platform that enables transactions for 
accessing data and services powered by High 
Performance Computing (HPC) and based on Big 
Data technologies, Machine Learning (ML), Artificial 
Intelligence and advanced data analytics. The 
platform consists of three main components: (i) data 
from different sources, algorithms and service 
providers; (ii) a supercomputing centre and the 
services it offers; (iii) various end-users from the 
public and private sectors.  The adoption of a 
Geospatial Data Model and the use of interoperability 
rules enable large dataset integration and processing 
capabilities; this allows using geospatial information 
of different types and sources with data that are not 
intrinsically geo-referenced. Data are stored in a data 
lake defined by a Geospatial Data Architecture 
(GDA); the handling of all the datasets in a common 
geospatial fashion, through GDA, enables the 
application of HPC-AI-based services. To test the 
platform three Use Cases are developed: Maritime, 
Mobility and Energy.  

Aiming to focus on the energy transition challenges 
and opportunities, especially with respect to the RES 
deployment, the Use Case Energy is suitable for this 
purpose and the current work will focus on its main 
features. Following the need of building up geo-
informed solutions, it is mainly based on the use of 
meteorological forecast techniques and satellite 
information as a way to facilitate and boost up the 
assessment of both energy demand and renewable 
power production. In particular, being the renewable 
potential intrinsically based on geographical 
constraints, the strategic use of geo-referenced data, 
though the exploitation of Remote Sensing 
techniques and climate variables, as input for 
traditional algorithms and advanced data-processing 
systems, can support the energy planning processes, 
from a local to a national scale. The DYDAS Platform 
will provide access to a data domain able to offer an 
interesting mix of production and demand, in 
particular with respect to photovoltaic (PV) plants 
and on-shore and off-shore Wind Farms (WF) 
located in Italy. Specifically, it will allow the use of a 
data domain of interest, through its download and 
processing, and also of user-friendly visualization 
tools. In particular, (i) the data domain, (ii) the 

analysis domain and (iii) the communication domain 
are at the basis of an adequate geo-informed 
infrastructure [6]. As stressed by Fremouw et al. [7], 
in order to elaborate ad-hoc tools and support 
informed decisions combining physical-spatial 
problems with energy-environmental ones, the 
access to geo-referenced datasets is essential; 
improving their availability and quality is a crucial 
step towards their effective exploitation.  Offering a 
structured spatial visualization of energy data means 
to support appropriate strategies and geo-informed 
interventions, then to identify priorities in energy 
planning, also through the selection of the most 
suitable locations [7]. The DYDAS Project, though the 
Use Case Energy, aims to address all the 
aforementioned challenges, making use of several 
instruments that, if correctly and efficiently 
combined, will allow to positively influence the 
energy transition process, paving the way for a more 
strategic allocation of RES. Specifically, being aware 
of the large volume of data involved in this type of 
analyses, the DYDAS platform makes use of HPC to 
deliver products that, through the integration of 
heterogeneous instruments and information, are 
able to share knowledge and to support decisions.  

In this framework, the present paper aims to track 
and deepen the main steps leading to the elaboration 
of the hourly production profiles with respect to PV 
and wind technologies, in order to obtain geo-
referenced data for renewable electricity generation 
to be matched with the local energy demand. Section 
2 is dedicated to the main algorithms needed to 
obtain the production profiles; these algorithms, 
concerning respectively solar PV plants and wind 
farms, require certain data domains which are 
deepened in section 3. Section 4 reports some results 
of the work, and finally, section 5 summarizes the 
main outcomes and future perspectives of the 
project. 

2. Research Methods

Wind and solar power are the most promising and 
widespread renewable sources in the world, being 
recognised as necessary and sustainable solutions to 
deal with the energy transition needs. Despite the 
high potentialities, the unpredictability of these 
sources represents a challenge for their integration 
in the energy system [8]. Therefore, to guarantee the 
correct operation of the power system and the 
correct demand-supply match, a prediction of wind 
farm and photovoltaic plant production is required. 
Akhter et al. [9] review the principal forecasting 
techniques for solar power previsions, classifying 
them according to the used method (physical, 
statistical or hybrid), forecasting horizon (intra-
hour, intra-day or day ahead) and time step (minutes 
or hour according to the objective of the analysis). 
Considering that the objective of the current 
research is to provide at least a day ahead forecast, a 
physical model was used, since it performs better for 
short-/medium-term provisions, despite its high 
computational cost [10] (that in this case is mitigated 
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by the use of HPC), and an hourly time step was 
selected.  
Both solar and wind sources are highly dependent on 
external weather conditions such as air temperature, 
solar radiation, wind velocity, as well as on local 
morphology of the ground. To consider all these 
aspects, the adopted methodology consists in the 
following steps: (i) identification of influencing 
climatic parameters; (ii) selection of proper 
algorithms from literature, able to take into account 
climatic and ground dependencies; (iii) identification 
of inputs and selection of relevant and complete 
databases for data collection; (iv) implementation of 
algorithms in a language suitable to be included and 
managed by the DYDAS platform.  
In the following sub-sections, the main algorithms 
for the estimation of power production from wind 
farms and PV plants will be listed, while in Appendix 
A all the equations with the relative parameters 
involved in the calculation are reported.  

2.1 Wind farms power production 
Starting from wind farms, the assumption was that 
only horizontal axis wind turbines are used. In order 
to estimate the electric power output, it is necessary 
to calculate the mechanical power (𝑃𝑚𝑒𝑐ℎ) in W, 
generated by the turbine as in Eq.1 [11]. 

𝑃𝑚𝑒𝑐ℎ =
1

2
∗  𝑐𝑝 ∗ 𝜌𝑎𝑖𝑟(ℎ) ∗ 𝜋 ∗

𝐷2

4
∗ 𝑢3(ℎ, 𝑧0)      (1)

Where 𝑐𝑝 is the Power Coefficient and comes from 

producers’ data (it must be lower than 16/27), ℎ is 
the hub height. Then, as a rule of thumb, the height of 
the tower is almost 1.5 times the diameter of the 
rotor [12]. Therefore, since the height hub is a known 
parameter for each WF, the rotor diameter can be 
calculated as D=h/1.5. 𝑢 and 𝑧0 represent the wind 
speed [m/s] at the hub height and the roughness 
length of the soil [m], respectively.  

If real data are not available, supposing air as a 
perfect gas, the following equations can be used to 
estimate the air density at the hub height. Equations 
expressing air pressure, temperature and density in 
function of the hub height are listed in Appendix A, 
according to [12],[13]. Moreover, there is a strong 
dependency also between wind speed (u), the height 
of the hub and the roughness of the ground (𝑧0), it 
can be expressed by Eq.2 [14]. 

𝑢(ℎ, 𝑧0) =  𝑢𝑟𝑒𝑓

ln(
ℎ

𝑧0
)

ln(
ℎ𝑟𝑒𝑓

𝑧0
)

 (2) 

It is well known that the wind turbine cannot exploit 
all the wind speeds, but there are some constrains, 
that are: 
• Cut-in speed (𝑢𝑐 = 3-6 m/s), the wind turbine is

not able to produce power until the wind
reaches the cut-in speed [15]; 

• Rated speed (𝑢𝑟 = 12-15 m/s), before the rated 
speed the wind turbine tries to optimize the
power output, while after this speed the
regulation control starts to limit the power in

order not to damage the turbine. Wind turbines 
are designed to deliver the maximum power at a 
speed of 12-15 m/s. Therefore, when the wind 
speed is higher, the power must be dissipated 
[15]; 

• Cut-off speed (𝑢𝑓 = 25 m/s), if the wind speed is 

higher than the cut of speed, the so-called thrust
limit has been reached and the regulation 
control of the turbine shut-down the machine in
order not to damage it [15]. 

According to this, the real mechanical power curve 
(𝑃𝑐𝑢𝑟𝑣𝑒  in W) in function of wind speed follows Eq.3. 

𝑃𝑐𝑢𝑟𝑣𝑒 = 𝑃𝑟 ∗ {

 0,  𝑢 < 𝑢𝑐   𝑜𝑟  𝑢 > 𝑢𝑓  

𝑃𝑎𝑠𝑐,     𝑢𝑐 < 𝑢 < 𝑢𝑟

1,   𝑢𝑟 < 𝑢 < 𝑢𝑓    
  (3) 

Where: 
𝑃𝑟  is the rated power output [W], while 𝑃𝑎𝑠𝑐 =
𝑃𝑚𝑒𝑐ℎ/𝑃𝑟  is the turbine output as a percentage of 
𝑃𝑚𝑒𝑐ℎ . Finally, to convert the actual mechanical 
power (𝑃𝑐𝑢𝑟𝑣𝑒) into electric power (𝑃𝑒𝑙), an efficiency 
of 40-45 % [14] must be used. 

2.2 Photovoltaic plants power production 
Moving to photovoltaic plants, the first step to 
calculate power production is the computation of 
solar radiation that arrives on the tilted plan of the 
panel (𝐺𝑇). Solar radiation intensity depends not 
only on a set of meteorological parameters, but it is 
strictly influenced also by geometric features (e.g., 
solar angles, panel slope, tilt angle, etc.). All 
equations needed to compute the parameters 
involved in (𝐺𝑇) are listed in Appendix A 
[16],[17],[18]. Moreover, Eq.4 allows to compute 𝐺𝑇 
for each hour of the year and for every location 
around the world. 

𝐺𝑇 = 𝐺𝑏𝑛 ∗ cos(𝜃) + 𝐺𝑑ℎ ∗ 𝐹𝑐−𝑠 + 𝜌 ∗ 𝐺𝑡ℎ ∗ (1 −
𝐹𝑐−𝑠)   (4) 

𝐺𝑏𝑛, 𝐺𝑑ℎ and 𝐺𝑡ℎ represent the beam normal 
radiation, the diffuse horizontal radiation, and the 
total horizontal radiation [W/m2], respectively.  𝜃 is 
the angle of incidence [°] of beam solar radiation on 
a surface whatever oriented and tilted; 𝐹𝑐−𝑠 is the 
collector-sky view factor, while 𝜌 represents the 
albedo (or reflection coefficient) and are both 
dimensionless. Then, once knowing the total 
irradiance, the output DC power of the plant (𝑃𝑜𝑢𝑡_𝐷𝐶) 
can be calculated, integrating equations [19] with 
technical data coming from PV panel datasheets. 

𝑃𝑝𝑒𝑎𝑘,𝑝𝑙𝑎𝑛𝑡 =  
𝐺𝑇

1000
∗ 𝑃𝑁,𝑝𝑙𝑎𝑛𝑡  (5) 

𝑇𝑐 = 𝑇𝑎 +
[𝑇𝑐,𝑁𝑂𝐶𝑇−𝑇𝑎,𝑁𝑂𝐶𝑇]

𝐺𝑁𝑂𝐶𝑇
∗

𝐺𝑇

1000
 (6) 

𝑃𝑜𝑢𝑡_𝐷𝐶 =  𝑃𝑝𝑒𝑎𝑘,𝑝𝑙𝑎𝑛𝑡 − (𝛼𝑝 ∗ 𝑃𝑝𝑒𝑎𝑘,𝑝𝑙𝑎𝑛𝑡) ∗ (𝑇𝑐 −

𝑇𝑐,𝑆𝑇𝐶)   (7) 

𝑃𝑝𝑒𝑎𝑘,𝑝𝑙𝑎𝑛𝑡  and 𝑃𝑁,𝑝𝑙𝑎𝑛𝑡  are the PV system peak power 

[kW] and the nominal power [kW]. 𝑇𝑐  and 𝑇𝑐,𝑆𝑇𝐶  mean 
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the cell temperatures [°C] in operation and in 
Standard Test Condition (STC). 𝑇𝑎  is the air 
temperature [°C], while 𝑇𝑐,𝑁𝑂𝐶𝑇 , 𝑇𝑎,𝑁𝑂𝐶𝑇 and 𝐺𝑁𝑂𝐶𝑇 
represent constant and predefined values 
concerning the panel cell temperature, the air 
temperature and the radiation on tilted surface in 
Nominal Operating Cell Temperature (NOCT) 
conditions. In particular, 𝑇𝑐,𝑁𝑂𝐶𝑇=45°C, 𝑇𝑎,𝑁𝑂𝐶𝑇=20°C 
and 𝐺𝑁𝑂𝐶𝑇=800 W/m2. Indeed, 𝛼𝑝 is a correction 

factor, namely the temperature coefficient of 
maximum power of the solar cell. 

2.2.1 Machine learning techniques for a proper 
detection of PV panels 
Machine learning techniques were exploited for the 
purpose of using accurate datasets as input for the 
algorithms. Specifically, a trained model and high-
resolution aerial images were used. Every time a new 
set of images is available the job can be run to update 
the census of active plants and estimate the power 
production over time. In particular, the accurate 
detection and delineation of PV panels was carried 
out by means of two similar deep learning 
approaches, namely Semantic Segmentation and 
Instance Segmentation. The former consists of 
classifying the whole image, pixel by pixel, in a 
predefined number of categories. The latter, after 
providing a detection box for every single panel, 
segments its contents to delineate the entity inside it, 
regardless of the category. 

3. Applications

The Use Case Energy is applied to the Italian country, 
but the proposed methodology can be generalised 
and, in presence of consistent databases, can be 
implemented for any area of the World. 

The Italian use case exploits data from different 
sources. In detail, climatic data, in the form of real 
time-products from the Atmospheric Model high-
resolution 10-day forecast, come from European 
Centre for Medium-Range Weather Forecasts 
(ECMWF) [20] and Aeronautica Militare. Data are 
provided in GRIB format and 4 forecast runs per day 
(00:00; 06:00; 12:00; and 18.00) are performed with 
hourly steps to step 90 for all four runs. On the other 
hand, the spatial resolution is a 0.1° x 0.1° (almost 
11.1 km) latitude/longitude grid, covering the whole 
Italian territory. The RES (wind farms and PV panels) 
location and features were collected from Gestore dei 
Servizi Energetici (GSE) datasets [21], while machine 
learning techniques were developed by LINKS 
Foundation (and then applied on CGR Spa Very High 
Resolution (VHR) Imagery [22].  

The DYDAS platform adopts Apache Spark as 
processing engine [23]; all Spark jobs are written in 
Python as well as custom jobs submitted by remote 
users.  Users can interact with the Platform 
exploiting a web interface running in Docker 
containers [24] in order to guarantee security and 
isolation by accessing only allowed resources and 
libraries.  

In order to develop the Use Case Energy, a function is 
in charge to: (i) download the climate data from 
ECMWF [20]; (ii) calculate the required parameters 
from that data with an hourly time-step; and then 
(iii) assign the obtained spatial- and temporal-
related values to each RES site to perform the energy 
production estimate. 

Concerning the solar panel detection through 
machine learning techniques, a dataset of very high-
resolution (VHR) images over two large areas of 
Piedmont, provided by CGR [22], was used. Over the 
same regions, LINKS Foundation also provided 
accurate manual annotations for more than 2000. To 
generate the input for the models, a pre-processing 
step was carried out independently for both 
modalities, with further tiling and filtering away 
every patch not containing useful information. 

4. Results and discussion

Since the DYDAS project is currently ongoing, the 
platform is not yet implemented in its final and 
completed version; due to this, its potentiality cannot 
be fully exploited to extract valuable outputs, as it 
will be at the end of the project. In line with the 
above, this section is devoted to deepening some 
results of the process of solar panel delineation 
through aerial imagery. Using Semantic 
Segmentation, a class label was assigned to every 
pixel in the image according to three classes: (i) 
Background, for each object which does not 
represent a solar panel; (ii) Polycrystalline panels 
and (iii) Monocrystalline panels.  

Fig. 1 - Example of Semantic Segmentation prediction. 

Fig. 1 offers a visual output of Semantic 
Segmentation prediction. Specifically, from left to 
right a snapshot of Aerial image (RGB input), ground 
truth and, model prediction is shown, where green 
and magenta colors refer to Monocrystalline and 
Polycrystalline panels, respectively. 

Concerning performances, the metric used to 
evaluate the accuracy of the Segmentation procedure 
was the Intersection over Union (IoU). This metric, 
varying between 0 and 1, is calculated as the ratio 
between the area of overlap (between 
the predicted bounding box and the ground-
truth bounding box) and the area of union (the area 
encompassed by the predicted and the ground-truth 
bounding boxes). Therefore, the greater the 
overlapping area, the greater the accuracy is. 
According to this definition, the Background class, 
which is by far the most represented, performs very 
well, reaching an IoU = 0.9777. The second most 
accurate category is the Polycrystalline one (IoU = 
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0.9174), due to more frequent examples and its 
pattern was easier to notice from above. On the other 
hand, concerning Monocrystalline panels, their 
lower representation in terms of samples and the 
consequent more challenging detection, results in a 
lower performance of Monocrystalline (IoU = 
0.7525). Generally speaking, the model performs 
very well on large solar plants, also thanks to a large 
panel surface, less background noise and simply a 
larger number of samples. Regarding the Instance 
Segmentation technique, considering the Average 
Precision with IoU at least of 0.5 the model can 
achieve a IoU of 0.8. Lower scores are typically 
associated with the extreme situation of solar plants 
that are very small or extremely large: smaller panels 
are more difficult to be delineated with precision, 
while larger panels cover a large portion of the 
image, making the detection step inherently more 
challenging. Therefore, in both cases (i.e., Semantic 
and Instance Segmentation), performances reach an 
IoU higher than 0.75 (considering Monocrystalline 
and Polycrystalline panels). Translating this score in 
percentage values, it means that at least 75% of the 
detections agree with human annotations, and the 
value can increase up to 88% in case of good 
conditions, especially for Polycrystalline panels. 
Therefore, it can be said that the outcomes of IoU 
calculation justify the use of Semantic Segmentation 
and Instance Segmentation techniques as a support 
tool for the identification of solar panels. Moreover, 
the final score can be negatively affected by the 
possible human error conflicting with the rightful 
detection of the model.  

Concerning the power production by wind farms, the 
application of the algorithms presented in section 2.1 
allowed to obtain the evolution of the electric power 
produced for the desired time horizon. In Fig. 2 the 
forecast of the electric power output (Pel) of a wind 
farm located in Golfo di Manfredonia (Puglia, Italy) 
for the 2nd of March 2022 is shown through an hourly 
timestep; it is evident how the evolution of Pel follows 
the one of the wind speed along the day.  

Fig. 2 - Example of daily evolution of wind speed and 
related electric power output for a wind farm. 

Moreover, in Fig. 3 the power production as a 
function of wind speed is reported.  It highlights the 
cubic proportionality of the electric power output in 
the “usable range” of wind speed before the rated 
speed (as said in Eq. 3), and clearly shows that before 
the cut-in speed (3 m/s) the power output is zero 
since the wind speed is too low to produce power. 

Fig. 3 - Daily wind power production as a function of 
wind speed. 

5. Conclusions

Dealing with the opportunities and challenges of the 
energy transition requires strong efforts concerning 
the use of the appropriate instruments and datasets, 
specifically for an efficient deployment of RES. The 
DYDAS project, through the Use Case Energy, aims to 
create a marketplace enabling transactions for 
accessing data and services powered by HPC, to 
support geo-informed interventions for RES 
allocation. The integration of IoT devices and AI 
techniques makes the platform able to exploit 
advanced datasets, to optimize data processing and 
to deliver user-friendly outputs, supporting 
decisions and sharing knowledge. Focusing on the 
potentiality of the platform with respect to the 
prediction of renewable production, this paper 
introduced the appropriate algorithms for wind farm 
and PV plant production, to guarantee the correct 
operation of the power system and the correct 
demand-supply match. Specifically, the Use Case 
Energy is applied to the Italian territory, through the 
exploitation of different data sources and datasets. In 
addition, to deepen the integration of machine 
learning techniques in the platform structure, two 
deep learning approaches were investigated to 
obtain a more accurate detection of solar panels. 
These advanced models allow to improve the quality 
of input data used in the algorithms, obtaining a 
better accuracy. 
Since the project is still ongoing, further work will be 
devoted to the validation of the production profiles 
and the implementation of user-friendly 
visualization tools to share geo-informed solutions. 
Moreover, future development of the DYDAS project 
will address the coupling of renewable production 
and electricity demand coming from residential and 
office buildings. 
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Appendix A 

This section lists all equation needed to compute 
power production Equations (reported in Section 2) 
for PV and WF plants, with a detailed description of 
each parameter involved.  

Photovoltaic Plants 

𝛿 = 23.45 ∗ sin (360 ∗
284+𝑛

365
)    (8) 

𝐶 = (𝑛 − 1) ∗
360

365
 (9) 

𝐸 = 229.2 ∗ (0.00075 + 0.001868 ∗ cos (𝐶) −
0.032077 ∗ sin (𝐶) − 0.014645 ∗ cos(2𝐶) −
0.04089 ∗ sin(2𝐶))   (10) 

𝑡𝑠𝑜𝑙𝑎𝑟 =  𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 −
(𝐿𝑙𝑜𝑐−𝐿𝑟𝑒𝑓)

15
+  

𝐸

60
− 𝐷𝑆𝑇      (11)

𝜔 = 15 ∗ (𝑡𝑠𝑜𝑙𝑎𝑟 − 12)   (12) 

cos (𝜃𝑧) =  cos (ϕ) ∗ cos (𝛿) ∗ cos (𝜔) +
sin (ϕ) ∗ sin (𝛿)   (13) 

cos (𝛾𝑠) =
cos(𝜃𝑧)∗sin(𝜙)−sin (𝛿)

sin(𝜃𝑧)∗cos (Φ)
 (14) 

The slope of the panel changes daily, according to the 
following equation: 

𝛽 = |𝜙 − 𝛿|  (15) 

𝐹𝑐−𝑠 =
1+cos (𝛽)

2
 (16) 

cos (𝜃) =  𝑐𝑜𝑠(𝜃𝑧) ∗ cos (𝛽) + 𝑠𝑖𝑛𝜃𝑧 ∗ sin (𝛽) ∗
cos (𝛾𝑠 − 𝛾)    (17) 

Tab. 1 – Variables for PV production estimation. 

Variables Definition Source Dependencies 

𝛿 
[°] 

Solar 
declination. 
Positive 
towards 
North 

Eq.8 – 
Cooper 
Formula 
[16] 

Day of the year 

n 
[day] 

Ordinal day 
of the year 

From 1 to 
365 

Day of the year 

C 
[°] 

Parameter 
for the 
calculation 
of E 

Eq. 9  Day of the year  

E 
[min] 

Equation of 
time 

Eq. 10  Day of the year 

𝑡𝑠𝑜𝑙𝑎𝑟 
[h] 

Time based 
on the 
apparent 
angular 
rotation of 
the Sun 
across the 
sky, 
assuming 
Solar time 
= 12 at 
Noon 

Eq. 11 
Hour of the 
day and 
location 

𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 
[h] 

Time given 
by the local 
clock 

Meteo-
rological 
data 

Hour of the 
day  

𝐿𝑙𝑜𝑐 
[°] 

Local 
longitude 

GIS/ 
Meteorolo
gical data 

Location 

𝐿𝑟𝑒𝑓 

[°] 

Longitude 
of the 
reference 
meridian 
for the local 
time zone 

𝐿𝑟𝑒𝑓

= −15° 
Constant value 
for Italy 

DST 
[-] 

Daylight 
Saving 
Time (“ora 
legale”) 

DST = 1 
when “ora 
legale” 
DST = 0 
when “ora 
solare” 

Day of the year 

𝜙 
[°] 

Latitude. 
Positive 
towards 
North 

GIS/ 
Meteo-
rological 
data 

Location 

𝜔 
[°] 

Hour angle. 
Positive 
towards 
West 

Eq.12 
[16] 

Hour of the 
day and 
location 

𝜃𝑧 
[°] 

Zenith 
angle 

Eq.13 
[17] 

Hour of the 
day and 
location 

𝛾𝑠 
[°] 

Azimuth 
angle.  
Positive 
towards 
West 

Eq.14 
[16] 

Hour of the 
day and 
location 
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β 
[°] 

Tilt angle Eq.15 
[16] 

Day of the year 
and Location 

𝛾 
[°] 

Surface 
azimuth 

Assumed 
𝛾 = 0° 
[16] 

Constant 

ρ 
[-] 

Reflection 
coefficient, 
albedo 

Assumed 
ρ = 0.23.  

Constant 

𝐹𝑐−𝑠 
[-] 

Collector-
sky view 
factor 

Eq. 16 
[17] 

Day of the year 
and Location 

 
[°] 

Angle of 
incidence 
of beam 
solar 
radiation 
on a 
surface 
whatever 
oriented 
and tilted 

Eq. 17 
[17] 

Hour of the 
day and 
location 

𝐺𝑏𝑛 
[W/m2] 

Beam 
normal 
radiation  

Meteo-
rological 
data 

Hour of the 
day and 
location 

𝐺𝑑ℎ 
[W/m2] 

Diffuse 
horizontal 
radiation 

Meteo-
rological 
data 

Hour of the 
day and 
location 

𝐺𝑡ℎ 
[W/m2] 

Total 
horizontal 
radiation 

Meteo-
rological 
data 

Hour of the 
day and 
location 

𝐺𝑇 
[W/m2] 

Total 
radiation 
on the 
tilted 
surface 

Eq.1 
[18] 

Hour of the 
day and 
location 

Wind Farms 

First of all, pressure and temperature in function of 
the hub height (h) must be calculated, through Eq.18 
[12],[13] and Eq.19 [12], respectively. 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑎𝑖𝑟  (ℎ) = 101.29 − (0.011837) ∗ ℎ +
(4.793 ∗ 10−7) ∗ ℎ2  (18) 

𝑇𝑎𝑖𝑟  (ℎ) = 𝑇𝑎𝑖𝑟 − 0.0066 ∗ ℎ  (19) 

Then, using perfect gas equation density at the hub 
height can be computed (Eq. 20) [12],[13]. 

𝜌𝑎𝑖𝑟(ℎ) = 3.4837 ∗
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑎𝑖𝑟 (ℎ)

𝑇𝑎𝑖𝑟 (ℎ)
 (20) 

Tab. 2 – Variables for WF production estimation.  

Variables Definition Source Dependencies 

𝑃𝑚𝑒𝑐ℎ  
[W] 

Mechanica
l power 
output

Eq.1 
[11] 

Hour of the day 
and location 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑎𝑖𝑟(ℎ)
[Pa] 

Pressure 
of the air 
at the hub 
height 

Eq. 18 
[12][13
] 

Hour of the day 
and location 

𝑇𝑎𝑖𝑟 
[°C] 

Air 
temperatu
re at 
ground 
level 

Meteo-
rologica
l data 

Hour of the day 
and location 

𝑇𝑎𝑖𝑟 (ℎ) 
[°C] 

Air 
temperatu
re at hub 
height 

Eq. 19 
[12] 

Hour of the day 
and location 

𝜌𝑎𝑖𝑟(ℎ) 
[kg/m3] 

Air density 
at the hub 
height 

Eq.20  
[12][13
] 

Hour of the day 
and location 

𝑐𝑝  

[-] 

Power 
coefficient 

Produc
er data 
or 
assump
tion  

Constant 

𝑢 
[m/s] 

Wind 
speed at 
the hub 
height 

Eq.5 
[14] 

Hour of the day 
and location 

𝐷 
[m] 

Diameter 
of the 
rotor blade 

Eq. 6 
[12] 

Location 

h 
[m] 

Height of 
the hub 

Elabora
tions 

Location 

𝑧0 
[m] 

Roughness 
length of 
the soil 

Produc
er data 
or 
assump
tion 

Constant 

𝑢𝑟𝑒𝑓 

[m/s] 

Wind 
speed at 
the 
reference 
height 

Meteo-
rologica
l data 

Hour of the day 
and location 

ℎ𝑟𝑒𝑓 

[m] 

Reference 
height 

10 m 
[14] 

Constant 
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