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Personal comfort models could be used for the development of automatic controls for personal 
environmental comfort systems (PECS).  These models often use indoor environment and 
physiological indicators as attributes for estimating the subjective response of occupants. 
Traditional indoor thermal environment research and standardization recommend 7-point 
scales for thermal comfort or thermal sensation estimation. However, many studies apply 
transformations to the response, thus oversimplifying the scales and generating controversy. 
The aim of this study is to determine the relevance of different indicators for the development 
of personal comfort models while investigating the implications and resulting model accuracy 
when using different thermal sensation scale discretization. Two simple machine learning 
algorithms, namely logistic regression and Naïve Bayes, were used in a multi-class setting to 
predict the overall thermal sensation of individual subjects when occupying a heated or cooled 
chair in steady state conditions. Multiple models were generated depending on the variables 
included in the feature set. Additionally, two response vectors were generated based on the 
thermal sensation vote, a three class and a seven class one, the latter being generated by further 
discretizing the hot and cold spectrum of thermal sensation. Both models performed better than 
a random guess at identifying thermal sensation classes and reached accuracies of up to 72% 
when predicting the overall thermal sensation of people using PECS. Including information of 
the PECS operation in the model, i.e. seat temperature, increased the prediction accuracy by up 
to 5%. The overall accuracy was higher when using three classes for the thermal response, as 
implementing seven classes led to a decrease of up to 21 percentage points. Nevertheless, the 
latter provided a finer adjustment without affecting the model’s ability to distinguish between 
the cold and hot spectrum, which may be an advantage for personal comfort systems that 
condition the microenvironment of the occupant.  

Keywords. Personal environmental comfort system, automatic control, thermal sensation vote, 
machine learning, response scale. 
DOI: https://doi.org/10.34641/clima.2022.120

1. Introduction
Personal environmental comfort systems (PECS) are 
a topic of interest because they could improve 
comfort by dealing with the inter-personal 
differences between people [1], [2]. Their 
implementation could lead to energy savings [1], 
[2]. However, for an optimal operation, automatic 
controls based on machine learning algorithms are 
becoming attractive as an alternative to manual 

interaction between the occupant and the PECS. 

Monitoring and including physiological indicators 
such as skin temperature and heart rate in the 
control of the indoor environment has the potential 
to suplement or replace occupant feedback [3]. By 
including these indicators alongside environmental 
parameters in thermal comfort prediction models 
based on machine learning algorithms can achieve 
accuracies of up to 98% [4][5]. However, it is still 
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unclear which algorithms, indicators, or response 
scale should be used [1], [2], especially for PECS. 
Katić et al. [6] found that mean skin temperature, 
hand skin temperature, and PECS control intensity 
influence thermal comfort and should be included 
as features when PECS is in use. By integrating 
wrist, forehead, nose, and cheek skin temperature, 
Aryal et al. [7] managed to obtain accuracies of up to 
85% for thermal comfort prediction when using no 
PECS, a fan, or a heater if the models were trained 
using only the data for each specific system. 
However, although both studies registered thermal 
sensation using the ASHRAE 7-point scale [8], it was 
discretized into three classes when using it as a 
response vector for the thermal comfort models as 
in other studies [2].  

The goal of the present study was to assess whether 
machine learning algorithms could be used for the 
automatic control of PECS and which indicators and 
thermal response scale should be used. The 
prediction power of two algorithms, namely logistic 
regression and Naïve Bayes, when used to estimate 
overall thermal sensation while using a PECS under 
steady-state conditions was investigated. Different 
models were built with different sets of variables to 
assess their relevance for thermal comfort 
prediction when using a PECS. By discretizing 

thermal sensation into three or seven classes and 
retraining the models, the resulting differences 
could be compared. 

2. Methods
2.1 Dataset 

The dataset consisted of 980 observations of the 
operative temperature (Top), the seat temperature 
(Tseat), the skin temperature, and the overall 
thermal sensation (TSV). The data were obtained 
from twenty human subjects (ten females and ten 
males) in experiments in climate chambers with a 
heated/cooled seat. The subjects were university 
students with a body mass index (BMI) between 20 
and 30. Clothing was maintained constant 
throughout each session but differed depending on 
the chamber temperature, between 0.5 clo when hot 
and 1 clo when cold. 

In all, three scenarios were emulated: hot summer 
(44°C), cold winter (10°C), and near comfort (20°C). 
The seat was designed to heat or cool depending on 
the chamber temperature, cold or hot respectively 
to maintain comfort. The seat temperature was set 
to 40°C when heating, 20°C when cooling, and 34°C 
when close to comfort (Fig. 1).  The measurement of 

Fig. 1 - Histogram of variables in the dataset: operative temperature (Top), seat temperature (Tseat), skin temperature 
of the back (Tsback), left thigh (TsthighL), and left palm (TspalmL), and the overall thermal sensation of the subjects 
(TSV). 
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the operative temperature and the seat temperature 
had a five-minute resolution. 

The skin temperature was monitored at two 
different points on the body, namely the back 
(Tsback), the left back thigh (TsthighL), both body 
parts in contact with the heated/cooled chair. The 
skin temperature had a resolution of one minute. As 
shown in Fig. 1, all skin temperatures were 
negatively skewed. The thermal sensation votes 
(TSV) followed a 9-point scale, namely very hot, hot, 
warm, slightly warm, neutral, slightly cold, cool, 
cold, and very cold. The TSV was positively skewed 
with very few “very cold” votes registered.  In total 
ten thermal sensation votes were registered per 
condition from each subject.  

2.2 Models 

Due to the discrete and nominal nature of the multi-
class predicted variable, namely the TSV, the 
problem represented a classification task.  A logistic 
regression (Logit) and a Naïve Bayes (NB) algorithm 
were therefore selected for the study.  

Six different sets of variables were used. The base 
set contained the operative temperature and the 
subject identification (sID). Three additional sets 
were generated by including the remaining 
variables, namely the seat temperature and the skin 
temperature of the back and thigh, in an alternating 
sequence. Two additional sets contained either the 
seat temperature and the sID or all variables except 
for the TSV. The sID, which indicates to which 
subject the variable refers, was always included 
since the aim was to generate an individual thermal 
comfort model. 

For all models, the overall thermal sensation 
represented the response vector. However, the 
thermal sensation was simplified to either three 
(TSV3) or seven categories (TSV7). For both 
response vectors, the slightly hot and slightly cold 
classes were merged in the neutral class, as they are 
usually perceived as acceptable. Two other classes, 
hot and cold, were created in the TSV3 response by 
merging all the remaining hot and cold sensations, 
respectively. The rest of the remaining classes were 
kept separate for TSV7.  

In total, seven different models were created for 
each algorithm. The first six used the TSV3 and each 
of the six sets of variables. For the last model, the 
TSV7 was used with the set containing all of the 
other variables in order to compare the results with 
the three-category scale of thermal sensation. In all 
instances, the performance of the two algorithms 
was compared to a baseline. The baseline 
represented a model that predicted everything as 
belonging to the class with the highest frequency in 
the response vector.  

2.3 Training and test 

Training and testing of the algorithms was carried 
out on the entire dataset in Python version 3.8.5. A 
two-level K-fold cross validation was used, with 
K1=K2=10 at each level. The data were shuffled 
before splitting them into the train and test sets. At 
the inner level (K1), the respective complexity 
control parameter of each algorithm was optimized 
using only the training set of the outer level (K2). In 
the regularized logistic regression algorithm (L2 
penalty), the regularization parameter λ was tuned. 
In the NB algorithm Laplace smoothing was 
included, where α>0 was chosen as a complexity 
controlling parameter and optimized.  

At the outer level, the optimized algorithm was 
trained and tested using the entire dataset, thus 
estimating the generalization error. The optimized 
model was retrained at the outer level to avoid 
overestimating the generalization error [9]. The 
error rate, equal to the number of misclassified 
observations divided by the number of test 
observations, was used as a performance indicator 
at each level. The accuracy, precision, recall, and F1-
score were computed for each model using 
Equations 1 to 5. The precision, recall, and F1-scores 
were computed using the weighted average due to 
the class imbalance observed in the data (Fig. 1), 
where the weight represented the number of true 
instances for each label:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑐𝑐
𝑇𝑇𝑇𝑇𝑐𝑐+𝐹𝐹𝐹𝐹𝑐𝑐

, 𝑐𝑐 ∈ [1,𝐶𝐶] (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑐𝑐
𝑇𝑇𝑇𝑇𝑐𝑐+𝐹𝐹𝐹𝐹𝑐𝑐

, 𝑐𝑐 ∈ [1,𝐶𝐶] (2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ 1
𝑛𝑛𝑐𝑐

𝐶𝐶
𝑐𝑐=1 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 (3) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ 1
𝑛𝑛𝑐𝑐

𝐶𝐶
𝑐𝑐=1 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 (4) 

𝐹𝐹1 = ∑ 1
𝑛𝑛𝑐𝑐
∙ 2∙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐+𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐

𝐶𝐶
𝑐𝑐=1 (5) 

where TP is the number of true positives, FP the 
number of false positives, and FN the number of 
false negatives. C indicates the number of classes, 
and n represents the number of observations. In 
order to assess and compare the models, a pairwise 
statistical t-test was used [10][9]. 

3. Results
3.1 Correlation between the variables 

The correlation (Pearson’s correlation coefficient) 
between the variables (Top, Tseat, Tsback, 
TsthighL) and the response (TSV) is shown in Fig. 2. 
The dark blue colour represents a strong negative 
correlation, while the dark red colour represents a 
strong positive correlation. A value close to 0 
indicates no correlation. 
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Fig. 2 - Pearson correlation between variables. 

An almost perfect linear correlation was found 
between the Top and Tseat since when the 
operative temperature was low (10 °C) the seat 
temperature was high (40 °C) and vice-versa. All 
attributes were correlated with the TSV, with the 
Top and Tseat having a stronger correlation than 
the Tsback and TsthighL. The only negatively 

correlated attribute with the TSV was the operative 
temperature due to the scale’s characteristics, as it 
spanned from very hot (0) to very cold (100). Since 
the back and the left thigh were in contact with the 
seat, the skin temperature (Tsback and TsthighL) 
was positively correlated with the seat temperature 
while negatively correlated with the operative 
temperature. This also meant that the two skin 
temperatures were linearly correlated. 

3.2 Model performance 

Tab.  1 shows the results of the models obtained 
from the two-level K-fold cross validation by 
algorithm and variable set. In order to quantify their 
ability to predict thermal sensation, the weighted 
precision, recall, and F1-score are given together 
with the overall accuracy of each model. The 
performance of the Baseline model was the same for 
each set of variables. However, it was dependent on 
the response vector, TSV3 or TSV7, since the most 
frequent thermal sensation was in the hot class for 
the former and in the neutral class for the latter.  

Tab.  1 – Accuracy and weighted precision, recall, and F1-score by algorithm, feature set, and response used.  

Algorithm Feature set Response Precision Recall F1-score Accuracy 

Baseline TSV3 0.32 0.57 0.41 0.57 

Logit Top, sID TSV3 0.66 0.67 0.66 0.67 

NB 0.65 0.66 0.61 0.66 

Logit Tseat, sID TSV3 0.64 0.67 0.65 0.67 

NB 0.6 0.63 0.6 0.63 

Logit Top, sID, Tseat TSV3 0.71 0.72 0.71 0.72 

NB 0.71 0.68 0.67 0.68 

Logit Top, sID, Tsback TSV3 0.67 0.68 0.67 0.68 

NB 0.73 0.69 0.69 0.69 

Logit Top, sID, TsthighL TSV3 0.66 0.67 0.67 0.67 

NB 0.71 0.67 0.68 0.67 

Logit Top, sID, Tseat, Tsback, TsthighL TSV3 0.72 0.72 0.72 0.72 

NB 0.71 0.68 0.67 0.68 

Baseline TSV7 0.15 0.39 0.22 0.39 

Logit Top, sID, Tseat, Tsback, TsthighL 0.56 0.57 0.56 0.57 

NB 0.43 0.47 0.42 0.47 
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Both the Logit and the NB algorithms outperformed 
the Baseline. The accuracy of the Logit algorithm 
was higher by 0.1 to 0.15 when TSV3 was used as a 
response vector. Moreover, with the seven-point 
scale the difference increased by 0.18. The NB 
algorithm surpassed the Baseline by only 0.6 to 0.12 
and 0.8 depending on the scale of the response, 
three or seven categories respectively. 

For the same response vector, TSV3, the inclusion of 
both Top and Tseat in the feature set led to the 
highest accuracy, 72%. However, changing the 
operative temperature for the seat temperature as a 
model variable when predicting thermal sensation 
made little difference. Additional features, i.e. the 
skin temperatures, did not improve the accuracy of 
any of the algorithms.  

The precision, recall, and F1-score were always 
between 60% and 72% for the Logit and NB when 
the response had only three classes. The model was 
able to identify a great degree of samples from each 
class while mismatching few samples [11], [12]. In 
general, the Logit algorithm obtained higher values. 
Values below 60% were observed when the 
response vector had seven classes. Still, with both 
three or seven classes, the precision and recall 
improved. With three classes for the TSV, the 
precision approximately doubled while the recall 

improved by up to 0.15 compared to the Baseline. 
When the response was changed to seven classes, 
the precision and recall increased by 0.41 and 0.18 
for the Logit and by 0.28 and 0.8 for the NB. This led 
to an F1-score increase of 0.34 for the Logit and 0.2 
for the NB algorithms. 

Fig. 3 shows the confusion matrices for some of the 
Logit models. By comparing Fig. 3 a and b it was 
observed that the number of class matches (grey) 
increased while the number of critical mismatches 
between the cold and hot spectrum (red) decreased 
with the inclusion of additional variables. 
Additionally, although the overall mismatches 
increased when the response was categorized in 
seven classes, the number of misclassified 
observations between the hot and cold spectrum 
remained almost constant (Fig. 3 c).  

3.3 Statistical evaluation 

The performance of the three models relative to 
each other, i.e. Logit vs. Baseline, Logit vs. NB, and 
NB vs. Baseline, was evaluated using pairwise 
statistical t-tests. The 95% confidence intervals (CI), 
α=0.05, and the p-values are shown in Tab.  2. The 
performance differs for a p-value < 0.05, i.e. the 
probability that the two classifiers would predict 
differently given the number of different predictions 
made. 

Fig. 3 - Confusion matrices of different logistic regression models with features: a) Top, sID, TSV3, b) Top, sID, Tseat, 
Tsback, TsthighL, c) Top, sID, Tseat, Tsback, TsthighL. The correctly classified and the misclassified observations 
between the warm and cold spectrum are highlighted in grey and red, respectively.   
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Tab.  2 – The pairwise statistical t-test results between the three algorithms, Logit, NB, and Baseline. 
Test Feature set Response Confidence interval (CI) p-value

Logit vs. Baseline Top, sID TSV3 [0.06;  0.15] 2 ∙ 10−4 

Tseat, sID [0.05;  0.15] 3 ∙ 10−4 

Top, Tseat, sID [0.09;  0.19] 4 ∙ 10−6 

Top, Tsback, sID [0.07;  0.14] 1 ∙ 10−5 

Top, TsthighL, sID [0.06;  0.15] 4 ∙ 10−5 

Top, Tseat, Tsback, TsthighL, sID  [0.1;  0.19] 1 ∙ 10−6 

Top, Tseat, Tsback, TsthighL, sID TSV7 [0.12;  0.25] 5 ∙ 10−6 

Logit vs. NB Top, sID TSV3 [0.01;  0.06] 8 ∙ 10−3 

Tseat, sID [0.02;  0.07] 5 ∙ 10−3 

Top, Tseat, sID [0.02;  0.07] 5 ∙ 10−4 

Top, Tsback, sID [0.01;  0.07] 1 ∙ 10−2 

Top, TsthighL, sID [0.02;  0.06] 7 ∙ 10−4 

Top, Tseat, Tsback, TsthighL, sID  [0.02;  0.07] 3 ∙ 10−3 

Top, Tseat, Tsback, TsthighL, sID TSV7 [0.04;  0.15] 1 ∙ 10−3 

NB vs. Baseline Top, sID TSV3 [0.06;  0.12] 1.3 ∙ 10−6 

Tseat, sID [0.04;  0.1] 2 ∙ 10−4 

Top, Tseat, sID [0.05;  0.18] 2 ∙ 10−3 

Top, Tsback, sID [0.05;  0.17] 6 ∙ 10−4 

Top, TsthighL, sID [0.06;  0.16] 1 ∙ 10−4 

Top, Tseat, Tsback, TsthighL, sID [0.07;  0.17] 1 ∙ 10−6 

Top, Tseat, Tsback, TsthighL, sID TSV7 [0.05;  0.14] 2 ∙ 10−4 

Tab.  2 shows that none of the 95% confidence 
intervals (CI’s) of the pairwise t-tests contain zero. 
Thus, there was strong evidence that both the Logit 
and the NB had a higher accuracy than the Baseline. 
Although there was still evidence that the Logit had 
a higher accuracy than the NB, the effect was not as 
significant in this case. For all three pairwise 
comparisons, the p-values are significantly smaller 
than the chosen level, 0.05. In general, the lower and 
upper bounds of the confidence interval moved 
further away from zero as more variables were 
included. 

4. Discussion
The focus of this study was to determine whether 
machine learning algorithms could be used for the 
control of personal comfort systems and which 
indicators should be used as input. Two simple 
algorithms, logistic regression and Naïve Bayes, 
were used to assess their ability to predict the 
overall thermal sensation based on the operative 
temperature, the seat temperature, and the skin 
temperature in contact with the seat, namely of the 
back and thigh, was assessed. 

The Logit and NB algorithms managed to reach 
accuracies up to 72% for a three class TSV response, 
supporting the values previously reported in 
literature [13], [14]. Although this only meant an 
increase of up to 15 percentage points from the 
Baseline, the use of the two algorithms actually 
reduced the misclassification rate while increasing 
the models’ effectiveness at identifying each class, 
as seen in the increase in recall and precision. 
Moreover, the high accuracy of the Baseline was a 
consequence of the skewness in thermal sensation 
votes, which were concentrated on the warm side. 
This could be due to the high heating and low 
cooling effectiveness of the chair as shown by the 
distribution of the subjects’ votes. Therefore, even 
at low or high operative temperatures the subjects 
rarely reported feeling cold. The actual performance 
of the models when used with a more balanced 
dataset requires further investigation. 

The highest overall increase in performance was 
observed when both Top and Tseat were included in 
the input set, confirmed by the statistical evaluation. 
Even though the two variables were collinear, they 
had an opposite effect on the TSV as the chair was 
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supposed to counter the loss in thermal comfort 
caused by the change in operative temperature. 
Moreover, since the back side of the body was in 
contact with the chair while the front side was 
directly exposed to the ambient thermal conditions 
it was expected that both would be correlated 
almost equally although inversely with the TSV, thus 
providing additional information to the model.  

Having the skin temperatures from the two body 
parts in contact with the heated/cooled chair in the 
set of input variables did not improve the model 
performance. As observed both the Tsback and 
TsthighL showed a weak correlation with TSV. At 
the same time, they were not perfectly correlated 
with each other, most likely due to the non-uniform 
seat temperature and area of contact. Moreover, 
since the skin temperature was measured at points 
in direct contact with the chair, these variables were 
providing the same information to the model as the 
seat temperature. As previous research showed, 
there could be other physiological and 
environmental indicators, e.g. relative humidity, 
heart rate, and the heat flux between the seat and 
the occupant that could improve the prediction of 
the TSV [15]–[18]. Additionally, in a dynamic 
environment the time constant of the heating or 
cooling element of the chair might make these 
aforementioned indicators more relevant. 

When investigating the effect of the response scale it 
was determined that an increased discretization led 
to a decrease in performance, and this applied also 
to the Baseline model. Even with a higher 
discretization the model maintained the same 
distinction power between hot and cold sensations. 
The problem was though differentiating between 
the neutral and the warm or cool sensations and the 
increase in computational power. A higher 
discretization may provide additional information 
regarding the intensity of the thermal sensation and 
increased flexibility for the control but questions 
remain on the optimality of the scale and its 
discretization for thermal comfort prediction [2].  

The difference in performance between the two 
algorithms, Logit and NB, is inherently due to the 
way the two operate. The logistic regression is a 
linear model while the relationship between 
environmental and physiological indicators and 
thermal sensation is complex [1]. The NB assumes 
the variables are conditionally independent [1], [9], 
which could also be the reason for the slightly worse 
performance of the NB in the present dataset. Other 
algorithms such as decision trees, support vector 
machines, and artificial neural networks should be 
considered since previous research has shown that 
they are useful for thermal comfort estimation [1], 
[19]. Including feature transformations such as the 
gradient or mean of different variables should also 
be considered in future model development. 

5. Conclusion
Both algorithms, the Logistic Regression and the 
Naïve Bayes, achieved a sub-optimal performance 
registering an accuracy of up to 72% when 
predicting the thermal sensation of subjects using a 
PECS. However, the models performed better than a 
random guess.  

Information on the operation of the PECS should be 
included in the set of input variables as the 
prediction accuracy increased by up to 5% when the 
seat temperature was added to the operative 
temperature. This is in line with the findings of Katić 
et al. [6] and Aryal et al. [7] who showed that the 
PECSs’ settings should be used as input variables in 
personal comfort models as they influence 
individual thermal preference. However, the skin 
temperature of any body parts in direct contact with 
the PECS may not provide any useful additional 
information for thermal sensation prediction. These 
findings support the idea that control signals and 
measurements of the PECS output, which are easier 
to obtain than physiological indicators, could be 
used to improve the predictive accuracy of personal 
comfort models. 

The benefit of having additional classes and hence a 
more accurate control came at a greater 
computational cost. Nevertheless, this did not affect 
the model’s ability at distinguishing between the 
cold and hot spectrum. 

Dataset 
The datasets generated during and/or analysed 
during the current study are not available because 
of a non-disclosure agreement but the authors will 
make every reasonable effort to publish them in 
near future. 
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