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Abstract. Energy management in buildings is facing a great challenge in Norway due to the 
COVID-19 pandemic. The largest difference between the pre-pandemic and post-pandemic 
period is the occupancy pattern in non-residential buildings. However, existing research only 
discussed the energy use change by longitudinal analysis, and no related research has been 
conducted based on the measured occupancy data in the post-pandemic period. Therefore, to 
fill this research gap, a case study with an office building in Trondheim, Norway, was conducted 
in our work to compare occupancy presence, heat use, and their relationship before and after 
the pandemic by using data-driven methods. For occupancy presence, on the one hand, 
occupants’ presence rate was lower during the post-pandemic period compared with during the 
pre-pandemic period; on the other hand, occupants’ absence rate in the lunchtime was 
decreased during the post-pandemic period compared with during the pre-pandemic period. In 
addition, two typical occupancy presence patterns in workdays were given in our study, the 
normal-working day pattern and half-working day pattern. The half-working day occupancy 
pattern appeared when Norway faced the second wave pandemic and the government 
implements more restrictive measures. In terms of heat use, the heat use increased markedly in 
the post-pandemic period, with the largest gap in hourly heat use between pre-pandemic and 
post-pandemic on workdays increasing around 21%, and increasing around 31% on holidays. 
The minimum daily heat demand of this building during the post-pandemic period was much 
higher than that in the pre-pandemic period, with increasing around 46% (on workdays and 
increasing around 86% on holidays. Regarding to their relationship, a more significant 
correlation between the daily heat use and the daily maximum occupancy rate during the post-
pandemic period was observed compared with that during the pre-pandemic period. This study 
indicates that the operation of the heating system of the case building may be inefficient in the 
post-pandemic period, and findings of this study could help engineers to optimize the operation 
mode of the heating system according to the change of occupancy pattern and achieve better 
energy-efficiency management in the post-pandemic period for similar type of building. 
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1. Introduction

At the March of 2020, the World Health Organization 
declared that Coronavirus disease-19 (COVID-19) 
became a global pandemic [1]. To prevent virus 
spreading, many restrictions were taken by 
governments from all over the world. City lockdown, 
keeping social distance, and working at home were 

basic measures to prevent people from gathering and 
slow down the spread of COVID-19. Occupancy 
pattern is one of the most significant factors that 
affect energy demand of buildings [2–5]. Such 
restrictions caused by COVID-19 had a great effect on 
occupants’ life habits and potentially affected energy 
demand of buildings due to the fact that working 
remotely would decrease occupancy presence in 
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non-residential buildings, while occupants spent 
more time at their home.  

Building energy demand change related to COVID-19 
is a new challenge in building energy management 
area and many publications discussed this issue. 
Some researchers focused on city-level electricity 
usage changes related to COVID-19. Investigation in 
[6] summarized the impact of pandemic on the
power system all over the world and presented that
power demand in many countries was reduced by
around 8%~30% during the pandemic. A study that
investigated electricity use among several European
countries, showed that, in post-pandemic period,
electricity use in countries (Spain, Italy, Belgium, and
the UK) with severe restrictions was noticeably
reduced, and their electricity usage pattern in
weekdays presented similar profiles with weekend
profiles in pre-pandemic period. However, lower
decrease in electricity use was observed in countries
with less restrictive measures, like Netherlands and
Sweden [7]. Some researchers concentrated on the
longitudinal comparison of energy use in residential
buildings before and after the pandemic. For
example, Rouleau and Gosselin [8] investigated the
energy use difference before and after the lockdown
in the Canadian social housing building, revealing
that the electricity and hot water use increased
obviously at the beginning of the city lockdown, and
there was no evident change in space heating use
during the lockdown period. Some researchers also
conducted analysis only in non-residential buildings.
For example, Geraldi et.al [9] conducted an analysis
to explore the impact of the city lockdown on the
electricity use in municipal buildings in
Florianópolis, Brazil.  Ivanko et.al [10] investigated
how the city lockdown affected the heat use in
Norwegian educational buildings. Ding et.al [11]
analyzed how the city lockdown influenced the
electricity use in Norwegians’ educational buildings
and residential buildings and  discussed the energy
saving potential in educational building by changing
operation mode during the lockdown period.

Although the energy demand was declined in most 
countries during the pandemic period [12], the 
COVID-19 also adds many uncertainties for energy 
efficiency [13]. Improving the building energy 
efficiency in the post-pandemic period is a great 
challenge [14] and it varies on building type[11, 15].  
However, on the one hand, the analysis of the 
pandemic impact on the energy use in office building 
is less. On the other hand, in the office building, one 
of the major differences between the pre-pandemic 
and post-pandemic period is the occupancy pattern 
due to the increasing trend of remote work, and as is 
well known that occupancy is also one of the most 
significant factors that affect building energy 
demand [2–5]. However, no related research has 
been conducted to investigate the difference in 
occupancy pattern of office building and how it 
influences on the energy use.  

To fill the research gap, this study would focus on the 

impact of COVID-19 pandemic on occupancy pattern 
and heat use of an office building in Norway. An 
energy efficiency passive office building in Norway 
was conducted as the case study. The purposes of this 
study are composed of three parts: 

1) Compare the occupancy pattern of this building in
pre-pandemic period and post-pandemic period.

2) Compare the heat use of this building in pre-
pandemic period and post-pandemic period.

3) Compare the relationship between the occupancy
and heat use in pre-pandemic period and post-
pandemic period.

2. Case introduction

2.1 Description of the case building 

An office building located in Trondheim, Norway, 
was investigated in this study. Some details about 
this building are introduced as follows. The 
appearance of this building is shown in Fig.1. The 
building is composed of six floors. There are two 
floors underground, one of which is a parking area at 
the lowest floor, and another of which is used for 
cafeteria, office room, meeting rooms, and partially 
for the parking area. The other four floors above 
ground are composed of a mixture of meeting rooms, 
single-celled offices, miscellaneous rooms, and open-
landscape working areas. The ventilation system in 
this building is a variable air volume (VAV) system. 
The heating ventilation system mode would adjust 
automatically according to the occupancy registered. 

Fig. 1 - Body of this office building. 

The thermal performance parameters of this building 
are summarized in Tab 1. The building was designed 
according to the Norwegian building code TEK17 [16]. 
The building code TEK17 is similar to the passive house 
standard. Although the parameters of the envelope of 
this building do not totally reach the passive house 
standard, it could be approximately seen as a passive 
building. 

The heat demand of this building is caused by space 
heating (SH) and domestic hot water (DHW). An air-to-
water heat pump with the rated heating capacity of 281 
kW supplies the base heat demand for heating. The 
building is also connected to the district heating (DH) 
system, which offers the heat demand for the peak load 
demand. The heat pump would be turned off when the 
outdoor temperature is less than -10°C, and the SH heat 
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demand in this building would be totally covered by the 
DH system.  

Tab. 1-Parameters of building envelope. 

U-value (W/m2∙K)

Outer wall 0.18 
Inner wall 0.15 
Ground floor 0.13 
Roof 0.13 
Windows 0.8 

2.2 Data collection 

Building management system (BMS), including the 
indoor environment monitoring and energy 
monitoring system, is used in this building. 
Monitoring data can be acquired from this system. 
There are many sensors installed in this building to 
sample parameters including occupancy state, 
indoor and outdoor air temperature, energy use, etc. 
The sample interval of sensors in this building was 
15 minutes. Occupancy data are key parameters used 
for analysis in this study. Regarding the occupancy 
sensors in this building, only the occupancy state 
within an area can be obtained, meaning that 0 or 1 
would be recorded to represent whether an area is 
occupied by occupants, while occupant counts can’t 
be known. To define the approximate occupancy 
level in this building, the hourly occupancy rate was 
calculated by dividing the sum of the occupancy 
status of all sensors in one hour by the total number 
of records of the occupancy status of all sensors in 
this hour. 

2.3 Dataset selection and description used for 
this study 

In our study, due to the limitation of data storage in 
the BMS system, the monitoring data in the BMS 
system can be only saved for a limited period, 
resulting in that the downloaded data didn’t cover 
the whole year, leading that the data in the pre-
pandemic period and post-pandemic period was not 
united in date. Therefore, different time period 
monitoring data was applied in different research 
purposes. For the first purpose, the comparison of 
occupancy pattern, data from January 1st to October 
21st in 2019, from May 21st in 2020 to March 29th 
in 2021, was used for pre-pandemic period and post-
pandemic period, respectively. For the second and 
third purpose, the comparison of heat use and the 
relationship between occupancy and heat use, 
considering that the heat use is influenced by the 
outdoor temperature, to eliminate the effects of the 
outdoor temperature on heat use profiles as much as 
possible, those days with their daily average outdoor 
temperature from -10 to 6°C during the same period 
(January 1st to March 27th ) in 2019 and 2021, was 
chosen for the heat use comparison analysis. Finally, 
the data description for different research purposes 
is summarized in Tab. 2. 

Tab.2-  Dataset description for different research 
purposes. 

Research 
purpose 

Data 
recording 
period 

Number 
of days 
recorded 
in 
database 

Number 
of hours 
recorded 
in 
database 

pre-
pandemic 
period 

Comparison 
of 
occupancy 
pattern 

January 
1st to 
October 
21st in 
2019 

294 7056 

Comparison 
of heat use 
and the 
relationship 
between 
occupancy 
and heat 
use 

January 
1st to 
March 
27th in 
2019 

85 2040 

post-
pandemic 
period 

Comparison 
of 
occupancy 
pattern 

May 21st 
in 2020 
to March 
29th in 
2021 

313 7512 

Comparison 
of heat use 
and the 
relationship 
between 
occupancy 
and heat 
use 

January 
1st to 
March 
27th in 
2021 

66 1584 

3. Methodology and results

Next, a series of data-driven methods would be 
applied to achieve our research aims. 

3.1 Comparison analysis of occupancy pattern 

In this section, firstly, basic statistical analysis would 
be taken to explore the occupancy presence 
distribution difference in the pre-pandemic period 
and post-pandemic period. Then, clustering would be 
used for identifying typical occupancy patterns in 
these two periods and compare the clustering 
results. 

Fig.2 shows that the distribution of daily maximum 
occupancy rate of workday both in the pre-pandemic 
and post-pandemic period. In order to obtain the 
most obvious impact of the pandemic on the 
occupancy pattern, the occupancy data of workdays 
was only used for this comparison analysis. As 
circled in red of Fig.2, in the post-pandemic period, a 
bimodal distribution was observed for the daily 
maximum occupancy rate, while that in the pre-
pandemic presents a unimodal distribution. The 
most frequent values of the daily maximum 
occupancy rate in the pre-pandemic period was from 
0.6 to 0.7, while the most possible daily maximum 
occupancy rate in the post- pandemic period 
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decreased to the range of 0.5 to 0.6, as can be noted 
in Fig. 2. Besides the most frequent daily maximum 
occupancy rate from 0.5 to 0.6, the daily maximum 
hourly occupancy rate from 0.25 to 0.30 also 
occurred frequently in the post- pandemic period, 
which indicated that there might be existed some 
particular occupancy scenarios in the post-pandemic 
period. Differences in the occurrence time point of 
the daily maximum hour occupancy rate could also 
be observed, as is shown in Fig.3. The most frequent 
time of the maximum occupancy rate of a day in the 
post-pandemic period was around 10 am to 11 am 
and 12 pm to 1 pm, while it was 1 pm to 2 pm in the 
pre-pandemic period. These observed differences in 
occupancy could give some references for the 
optimization of the operation mode in this building 
in the post-pandemic period. 

Fig. 2 - The distribution of daily maximum occupancy 
rate of workday in the pre-pandemic and post-
pandemic period. 

Fig. 3 - The distribution of the occurrence time point of 
the daily maximum occupancy rate for workday in the 
pre-pandemic and post-pandemic period. 

To obtain the typical occupancy pattern, the fuzzy c-
means was used in this study, which is considered as 
a best clustering method for occupancy pattern[17]. 
The Davies–Bouldin index (DBI) [18], a metric for 
evaluating clustering performance,  was used to 
select the best cluster number for clustering. The 
smaller the DBI value, the better the clustering 
performance. From the results of DBI index, two was 
the best cluster number both for the pre-pandemic 
and the post-pandemic data set. Clustering results 
are shown in Fig.4. It can be seen that, no matter in 
the pre-pandemic or post-pandemic period, the two 
typical patterns of working days were identified. 
Pattern 1 was a normal-working day that accounted 
for the most of the days, accounting for 88% (178 of 
202) in the pre-pandemic period and 64% (140 of
218) in the post-pandemic period of all investigated
working days. Pattern 2 was the half-working day
pattern when overall occupancy level was only about
50% of the normal-working day.

The differences of the typical occupancy patterns 
between the pre-pandemic and post-pandemic 
period could be explained from three aspects, as 
shown in Fig.4. Firstly, we could see that the 
occupied percentage for the half-working day 
pattern in the post-pandemic period was higher than 
that in the pre-pandemic period, from 12% 
increasing to 36%. Another difference was that the 
occupancy level was decreased in the post-pandemic 
period. For the normal-working day pattern, the 
occupancy rate decreased from 0.60 to 0.55, for the 
half-working day pattern, the occupancy rate 
decreased from 0.3 to 0.25. Lastly, occupants’ 
absence rate in the lunch time was decreased during 
the post-pandemic period, no matter of the normal-
working pattern or the half-working day pattern. 
This might be due to occupants’ life habit change in 
the post-pandemic period, such as they did not tend 
to go to the common canteen to have lunch or there 
were rules which group of occupants could go to the 
common canteen to reduce the infection risk of 
COVID-19. 

To observe the distribution of typical occupancy 
patterns on the timeline more clearly, we displayed 
the occupancy patterns distribution on the calendar, 
as shown in Fig.5. The calendar for 2019 presented 
the typical occupancy pattern distribution at the time 
axis in the pre-pandemic period. The calendar for 
2020 and 2021 presented the typical occupancy 
pattern distribution in the post pandemic period. 
Due to the limitation of data access, we could not get 
the whole year data, so only a part of the year was 
presented. In this calendar, 0 presents the holiday 
occupancy pattern, 1 presents the normal-working 
day pattern, and 2 presents the half-working day 
pattern. 

Fig. 4 - Clustering results of typical occupancy patterns 
in the pre-pandemic and post-pandemic period (The 
number in the bracket is the number of days belong to 
the pattern). 
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(a) In the pre-pandemic period 

(b) In the post-pandemic period 
Fig. 5 - The occupancy patterns’ distribution in the pre-
pandemic and post-pandemic period. 

From the Fig.4 and Fig.5, it can be seen that, the half-
working day pattern would occur at three scenarios: 
1) on Fridays; 2) on the days before a long national
holiday such as the Easter; 3) in July, when many
people take their annual vacation in Norway.
However, in the post-pandemic period, we could see
that, not only in previous mentioned scenarios, the
half-working day would also occur in days at January,
February, and some days on March in 2021, which
might be due to the fact that Norway faced the second
wave pandemic and the government implemented
restrictive measures during that that days. Further,
the results in Figs. 4 and Figs. 5 could indicate that,
when the pandemic rebounded, the occupancy
presence pattern would show the half-working day
occupancy pattern as it showed in July in the normal
year.

3.2 Comparison analysis of heat use 

In this section, we would take a comparison analysis 
of the heat use. Firstly, we would use the linear 
regression model to compare the relationship 
between the heat use and outdoor temperature in the 
pre-pandemic period and post-pandemic period. And 
then, the daily heat use profile in these two periods 
would be compared. 

Due to the cold climate in Norway, the energy use for 
space heating and domestic hot water represents the 
main part of the total energy use. Accordingly, the 
outdoor temperature may be regarded as the key 
factor determining the heat demand. Therefore, this 
section would explore how the pandemic influences 
the relationship between heat use and outdoor 
temperature. To convince that our comparison 
analysis was conducted in a similar outdoor 
temperature distribution, before the comparison 
analysis, according to the research method in a 
similar analysis[19], the Kruskal-Wallis H-test [20] 
was used to test whether the distribution of the 
outdoor temperature before and after the pandemic 
was the same, showing that there were no 
statistically significant differences in the outdoor 
temperature distribution in these two data sets used 
for the comparison analysis. And then, we started to 
process the comparison analysis. First, the scatter 
plot of the daily heat use versus the daily outdoor 
temperature is shown in Fig.6. In Fig. 6, the daily 
heat use was the sum value of hourly heat use for 24 

hours of a day, while the daily average outdoor 
temperature was the average value of hourly 
outdoor temperature for 24 hours of a day. The linear 
regression was used to describe the relationship 
between the daily heat use and the average outdoor 
temperature. In Fig. 6, it is possible to note that the 
linear relationship in the post-pandemic period was 
less steep than that in the pre-pandemic period, no 
matter on workdays or on holidays. However, the R2 
value was decreased more in holidays compared that 
in workdays. From this linear regression models in 
Fig. 6, it is also possible to note that when the 
outdoor temperature was above -4°C, the heat use in 
the post-pandemic period was higher than that in the 
pre-pandemic period. 

Fig. 6 - The relationship between daily heat use and 
daily outdoor temperature in the pre-pandemic and 
post-pandemic period. 

The daily heat use profiles (24-dimensional curve) in 
the pre-pandemic and post-pandemic period are 
shown in Fig.7. Hourly heat use in the daily profile 
was the average value of the corresponding hourly 
value in all investigated days, as calculated as Eq.(1), 
in which 𝐻𝐻𝑈𝑎𝑣,𝑗  ( 𝑗 ∈ [0,23]) represents the daily 

average value in the daily profile, and i represents ith 
day, and n represents the total  number of 
investigated days. 

𝐻𝐻𝑈𝑎𝑣,𝑗 =
∑ 𝐻𝐻𝑈𝑖,𝑗
𝑛
𝑖=1

𝑛
(1) 

It can be observed that, on holidays, the daily heat 
use profile curve was higher in the post-pandemic 
period than that in the pre-pandemic period. On 
workdays, in most of hours, the hourly heat use is 
higher in the post-pandemic when compared with 
that in the pre-pandemic; however, in some 
particular hours, the hourly heat use is a little lower 
in the post-pandemic period than that in the pre-
pandemic period, like the 2pm and 4am. Besides, the 
largest gap in the pre-pandemic and the post-
pandemic on workdays occurred at 10 am 
(increasing around 21%, from 7.2 W/m2 to 8.7 
W/m2), and occurred at 2 am (increasing around 
31%, from 7.0 W/m2 to 9.1 W/m2) on holiday. 
Additionally, the peak demand time was also 
changed: on workdays, the peak load time was 
forward one hour during the post-pandemic period, 
shifted from 6 am to 5 am; on holidays, the two peak 
times could be seen in the post- pandemic period, 2 
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am and 7 am, while only one peak demand time, 6 am, 
can be observed in the pre-pandemic period. 

Fig. 7 - Heat use profile in the pre-pandemic and post-
pandemic period. 

From above analysis, we could see the heat use in the 
post-pandemic period seems to be higher than that 
in the pre-pandemic period. To explore how much 
the heat use increased due to the pandemic, the 
cumulative distribution function (CDF) curve of the 
daily heat use is plotted in Fig.8. From the curve in 
Fig.8, it can be obviously observed that the start 
point of the CDF curve was much higher in the post-
pandemic period than in the pre-pandemic period, as 
summarized in Tab.3. The start point of the CDF 
could be considered as the minimum daily heat 
demand of this building.  Tab.3 indicates that the 
minimum daily heat demand was evidently 
increased in the post-pandemic period, especially on 
holidays, showing an increase of around 86%. It can 
be concluded from above heat use comparison 
analysis that, when outdoor temperature was in the 
similar situation, more heat use was observed in 
post-pandemic period than that in the pre-pandemic 
period, indicating that there may be inefficient 
operation mode in the post-pandemic period. 

Fig. 8 - The cumulative distribution function curve of 
daily heat use in the pre-pandemic period and post-
pandemic period. 

Tab.3-  Difference in the start value of CDF curve in the 
pre-pandemic period and the post-pandemic period. 

In the pre-
pandemic 
(Wh/m²) 

In the post-
pandemic 
(Wh/m²) 

Increase 

Workdays 70 102 46% 
Holidays 65 121 86% 

3.3 Comparison of the correlation relationship 
of occupancy with heat use 

As we addressed before, the heating ventilation 
system mode would adjust automatically according 
to the occupancy registered; also, this building is a 

passive building. Accordingly, the heat use may have 
some relevance with the occupancy rate. Therefore, 
in this section, we would like to explore how the 
pandemic has affected the relationship between the 
occupancy and the heat use. Firstly, the scatter plot 
of the daily heat use and the daily maximum 
occupancy rate is shown in Fig.9. As shown in Fig.9, 
a relatively dependence relationship between the 
heat use and the occupancy level could be observed 
(as the yellow arrow line) on workdays in the post-
pandemic period. Therefore, to investigate their 
relationship more quantitatively, the Spearman 
correlation coefficient and Spearman correlation test 
was used to compare the relationship between the 
heat use and the occupancy level before and after the 
pandemic, as shown in Tab.4. The null hypothesis for 
the Spearman correlation test was that the two 
datasets were not correlated; as such, a p-value <0.05 
indicated that these two datasets were correlated at 
a significance level of 0.05. Therefore, from the 
results of Spearman correlation test, a statistical 
significance negative correlation between the daily 
heat use and the daily maximum occupancy rate in 
the post-pandemic period was identified of the 
Spearman correlation coefficient of -0.63 (p-
value<0.05), while their correlation relationship was 
not evident before the pandemic. The stronger 
relationship between the heat use and occupancy 
indicates that the inefficiency operation mode may 
be resulted from the occupancy pattern change in the 
post-pandemic period. Maybe due to the fact that the 
building performance is similar to the passive 
building, the internal heat gain of the building from 
the occupancy was decreased, resulting in that the 
increase of the heat use in the post-pandemic period 
was obviously, despite the outdoor temperature was 
similar.  Above results indicate that it’s an urgency to 
optimize the heating system operation mode to fit 
the occupancy pattern presented in the post-
pandemic period.  

Fig. 9 - The scatter plot of daily heat use and daily 
maximum occupancy rate in the pre-pandemic and 
post-pandemic period. 
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Tab.4-  Spearman correlation coefficient of daily heat 
use and daily occupancy rate on workdays in the pre-
pandemic and post-pandemic period. 

Spearman correlation 
coefficient 

p-value

In the pre-
pandemic 
period 

-0.05 0.7287 

In the post-
pandemic 
period 

-0.63 2.06E-06 

4. Conclusions

In this study, we applied a series of data-driven 
methods for the comparison analysis of the 
occupancy and heat use in the pre-pandemic and 
post-pandemic period. A passive office building 
located in Trondheim, Norway was taken as the case 
study.  Firstly, the occupancy pattern in these two 
periods was compared. Then, the heat use in these 
two periods was compared. Finally, the relationship 
between the occupancy and heat use in these two 
periods was compared. The results show that, 
overall, due to the pandemic, some differences in 
these two periods can be obviously observed in this 
passive office building, which are summarized as 
follows: 

1) The occupants’ presence in this building in the
post-pandemic period was lower than that in the pre-
pandemic period. When Norway faced the second
wave epidemic and the government implemented
restrictive measures, the occupancy pattern in this
case office building would show likes the half-
working day pattern that would occur at some
particular scenarios during the pre-pandemic period.

2) The heat use was increased markedly in the post-
pandemic period. On the one hand, for hourly heat
use, the largest gap in hourly heat use between these
two periods on the workdays increased around 21%
(from 7.2 W/m2 to 8.7 W/m2), and increased around
31% (from 7.0 W/m2 to 9.1 W/m2) on holidays. On
the other hand, for daily heat use, the minimum daily
heat use of this building during the post-pandemic
period was much higher than that during the pre-
pandemic period, with increasing around 46% (from
70 Wh/m2 to 102 Wh/m2) on workdays and
increasing around 86% (from 65 Wh/m2 to
121Wh/m2) on holidays.

3) The relationship between occupancy rate and heat
use presented a stronger negative correlation in the
post-pandemic period than in the pre-pandemic
period.

This study indicates that the operation of the heating 
system of the case building may be inefficient in the 
post-pandemic period, and the findings of this study 
could help engineers to optimize the operation mode 

of the heating system according to the change of 
occupancy pattern and achieve better energy 
efficiency management in the post-pandemic period 
for the similar type of building.  
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